
RealityKit
Custom Shader API

 Developer

Overview 6
Understanding the Relationship Between Application Code and Shader Code 6
Rendering Scenes with Vertex Shaders and Fragment Shaders 7
Creating Custom Materials with Surface Shaders and Geometry Modifiers 7

Surface Shader APIs 8
surface_parameters 10 ...

surface_parameters::textures() 12 ...
surface_parameters::uniforms() 13 ..
surface_parameters::geometry() 14 ..
surface_parameters::material_constants() 15 ..
surface_parameters::surface() 16 ..

uniforms 17 ..
uniforms::time() 18 ...
uniforms::custom_parameter() 19 ..
uniforms::model_to_world() 20 ..
uniforms::model_to_view() 21 ..
uniforms::world_to_view() 22 ...
uniforms::view_to_projection() 23 ..
uniforms::projection_to_view() 24 ..

geometry 25 ...
geometry::screen_position() 27 ...
geometry::world_position() 28 ...
geometry::model_position() 29 ...
geometry::color() 30 ..
geometry::normal() 31 ...
geometry::tangent() 32 ..
geometry::bitangent() 33 ..
geometry::uv0() 34 ..
geometry::uv1() 35 ..
geometry::custom_attribute() 36 ...

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 2 133

geometry::view_direction() 37 ...

surface_properties 38 ..
surface_properties::base_color() 40 ..
surface_properties::set_base_color() 41 ..
surface_properties::emissive_color() 42 ..
surface_properties::set_emissive_color() 43 ...
surface_properties::normal() 44 ..
surface_properties::set_normal() 45 ..
surface_properties::roughness() 47 ..
surface_properties::set_roughness() 48 ..
surface_properties::metallic() 49 ...
surface_properties::set_metallic() 50 ..
surface_properties::ambient_occlusion() 52 ...
surface_properties::set_ambient_occlusion() 53 ...
surface_properties::specular() 54 ...
surface_properties::set_specular() 55 ...
surface_properties::clearcoat() 56 ..
surface_properties::set_clearcoat() 57 ..
surface_properties::clearcoat_roughness() 58 ..
surface_properties::set_clearcoat_roughness() 59 ...
surface_properties::opacity() 61 ..
surface_properties::set_opacity() 62 ...

Geometry Modifier APIs 64
geometry_parameters 65 ..

geometry_parameters::uniforms() 67 ..
geometry_parameters::textures() 68 ...
geometry_parameters::geometry() 69 ...
geometry_parameters::material_constants() 70 ..

uniforms 71 ..
uniforms::time() 72 ..
uniforms::custom_parameter() 73 ...

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 3 133

uniforms::model_to_world() 74 ...
uniforms::model_to_view() 75 ..
uniforms::world_to_view() 76 ...
uniforms::view_to_projection() 77 ..
uniforms::projection_to_view() 78 ..

geometry 79 ...
geometry::vertex_id() 81 ..
geometry::model_position() 82 ...
geometry::world_position() 83 ..
geometry::model_position_offset() 84 ..
geometry::set_model_position_offset() 85 ..
geometry::world_position_offset() 86 ..
geometry::set_world_position_offset() 87 ...
geometry::color() 88 ..
geometry::set_color() 89 ...
geometry::normal() 90 ...
geometry::set_normal() 91 ...
geometry::tangent() 92 ...
geometry::set_tangent() 93 ...
geometry::bitangent() 94 ..
geometry::set_bitangent() 95 ..
geometry::uv0() 96 ..
geometry::set_uv0() 97 ...
geometry::uv1() 98 ..
geometry::set_uv1() 99 ..

Shared APIs 100
textures 101 ...

textures::base_color() 103 ...
textures::emissive_color() 105 ...
textures::normal() 107 ..
textures::roughness() 108 ..

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 4 133

textures::metallic() 109 ..
textures::ambient_occlusion() 110 ...
textures::specular 111 ..
textures::opacity 112 ..
textures::clearcoat() 114 ..
textures::clearcoat_roughness() 116 ..
textures::custom() 118 ...

material_parameters 119 ...
material_parameters::base_color_tint() 121 ...
material_parameters::roughness_scale() 122 ..
material_parameters::metallic_scale() 123 ..
material_parameters::opacity_scale() 124 ...
material_parameters::opacity_threshold() 125 ..
material_parameters::emissive_color() 126 ...
material_parameters::specular_scale() 127 ...
material_parameters::clearcoat_scale() 128 ..
material_parameters::clearcoat_roughness_scale() 129 ..

Utility Functions 130
unpack_normal() 131 ..
unpack_normal() 132 ...
unpack_normal() 133...

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 5 133

Overview

When you create a scene using RealityKit, the framework renders it for you based on the various
material properties of the entities that make up your scene. It automatically leverages the device
GPU to do rendering calculations quickly, and can render both realistic and stylized scenes by
using different material structs, such as PhysicallyBasedMaterial or UnlitMaterial.
For many apps, RealityKit displays your scenes without you having to write any rendering code
at all. To achieve certain rendering or special visual effects, however, you might want to alter the
way RealityKit uses material properties and textures. RealityKit’s CustomMaterial, available
on macOS 12 and iOS 15 and later, enables you to do just that by writing Metal shader functions
that run on the GPU.

Understanding the Relationship Between Application Code and
Shader Code
To make effective use of custom materials, it’s important to understand the relationship
between your application code, which runs on the CPU, and Metal shader code, which runs on
the GPU. Your application code never directly calls the shader functions you write for a custom
material. Instead, you initialize the custom material with a reference to shader functions
contained in your Xcode project. RealityKit automatically copies those functions over to the
GPU, where they execute on every frame because they’re called by RealityKit’s shaders.
RealityKit copies the relevant values and textures from your custom material into memory that’s
shared between the CPU and GPU, which means that the Metal shaders can read them.
RealityKit provides a Metal library with functions and data structures for retrieving those that
data, as well as functions for specifying output values that RealityKit uses for final rendering.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 6 133

https://developer.apple.com/documentation/realitykit/physicallybasedmaterial
https://developer.apple.com/documentation/realitykit/unlitmaterial
https://developer.apple.com/documentation/realitykit/custommaterial

Rendering Scenes with Vertex Shaders and Fragment Shaders
While your application code runs sequentially on its thread, shader code is designed to run
concurrently to take advantage of the computing power of the GPU. For example, one of the
types of shader that RealityKit uses internally to render a scene is called a vertex shader, which
executes once for every vertex that makes the entity it’s currently drawing. A vertex shader
implements logic to do the calculations needed for only a single vertex, but a large number of
vertex shaders execute simultaneously to do the calculations for many vertices at once. This
makes shader code extremely fast for tasks that lend themselves to massively concurrent
execution, like vertex processing.
Another type of shader RealityKit uses to render scenes is called a fragment shader, and it
implements the logic to draw one fragment. A fragment is a single pixel for which the final
rendered color is potentially affected by the entity it’s drawing. A fragment isn’t a pixel, however.
It’s different in two primary ways. First, not every pixel is necessarily a fragment for a particular
entity. If RealityKit is drawing a small entity in the upper left corner of your screen, rendering it
won’t affect the color of pixels in the lower right part of your screen. Second, multiple fragments
can contribute to the final color of a single screen pixel. If there are two entities, one in front of
the other, for example, and the closer entity is translucent, both of those entity’s fragments
contribute to the final color of that one pixel.

Creating Custom Materials with Surface Shaders and Geometry
Modifiers
Custom materials support two types of shader functions: surface shaders and geometry
modifiers. Surface shaders are called by RealityKit’s fragment shader and can override
RealityKit’s rendering calculations for each of the entity’s fragments. Geometry modifiers are
called by RealityKit’s vertex shader and can override the properties of any of your entity’s
vertices, including their position, color, and UV coordinates, which are used to map textures on
to the surface of your entity. Every custom material requires a surface shader, but a geometry
modifier is optional.
This document lists all the RealityKit Metal APIs that you use to implement custom materials.
The first section contains APIs available only to surface shaders. The second section contains
APIs available only to geometry modifiers. The third section documents APIs available in both
types of shader functions, and the last section contains utility functions that are available to
both types of shaders but aren't part of a struct or class.
For more information on using shader functions with custom materials, see Modifying RealityKit
Rendering Using Custom Materials.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 7 133

https://developer.apple.com/documentation/realitykit/modifying_realitykit_rendering_using_custom_materials
https://developer.apple.com/documentation/realitykit/modifying_realitykit_rendering_using_custom_materials

Surface Shader APIs

RealityKit’s Metal shaders call a surface shader every frame during fragment shader execution.
For entities that use a custom material, a material’s surface shader is responsible for setting all
the attributes RealityKit needs to render the entity, such as base color and roughness.

Receiving Input
A surface shader takes a single parameter of type surface_parameters. That parameter
provides access to all the custom material’s properties, as well as functions that specify the final
value for various attributes.
Certain values that are available to your surface shader are specified per-vertex, such as vertex
position, normal, and UV coordinates. When you access these values from a surface shader,
Metal interpolates the per-vertex values based on the current fragment’s position relative to the
three vertices that make up its triangle. For example, vertex color is a per-vertex value. In a
surface shader, vertex color is calculated from the vertex color values of the three vertices that
make up the fragment’s triangle. A color halfway between a red vertex and a blue vertex
receives a purple vertex color, even though none of the vertices are actually purple, as the
following illustration demonstrates.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 8 133

Setting Output Values
RealityKit doesn't automatically use any of a custom material’s properties to render an entity,
which is unlike other material types. Your surface shader must specify the final calculated value
for each rendering — for example, base color and roughness — for each fragment. That means
that if you set the baseColor property on your custom material, your entity will render as white
unless your surface shader calls params.surface().set_base_color().
The surface shader outputs that RealityKit uses to render your entity depend on which
lightingModel you selected when creating the material.

The properties on CustomMaterial largely mirror those on PhysicallyBasedMaterial,
and in most situations, it's recommended to use the available properties to calculate the
corresponding final output value. For example, you typically use the baseColor property on
your material to provide the inputs for RealityKit to calculate base color. However, there’s
flexibility in how you use these inputs. You can choose how to use the material's texture and
property inputs in your surface shader.
You might use two textures to animate your entity's base color over time by rotating the UV
coordinates of one of the two textures. Because CustomMaterial only has one base color
texture available, you’d use the custom attribute’s texture, or the texture of an unused property
(like emissiveColor) if you use the custom property for something else.
For more information on using shader functions with custom materials, see Taking Control of
RealityKit Rendering Using Custom Materials.

Lighting Model Supported Output Functions

.lit All except set_clearcoat() and
set_clearcoat_roughness().

.clearcoat All.

.unlit Only set_emissive_color().

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 9 133

https://developer.apple.com/documentation/realitykit/custommaterial/3767825-lightingmodel
https://developer.apple.com/documentation/realitykit/custommaterial
https://developer.apple.com/documentation/realitykit/physicallybasedmaterial
https://developer.apple.com/documentation/realitykit/custommaterial/3767819-emissivecolor
https://developer.apple.com/documentation/realitykit/modelcomponent/taking_control_of_realitykit_rendering_using_custom_materials
https://developer.apple.com/documentation/realitykit/modelcomponent/taking_control_of_realitykit_rendering_using_custom_materials

Struct

surface_parameters
An object the framework uses to pass data into a surface shader.

Namespace

realitykit

Declaration

struct surface_parameters

Overview
The surface_parameters struct holds all the information that RealityKit passes into a
surface shader function. Values are grouped into sub-objects of related types. For example, you
can use the object returned by textures() to access textures from your entity’s material and
the object returned by material_constants() to access non-texture values, like the base
color tint or roughness scale.
A surface shader must set output values by retrieving surface() and using its various set_
functions to tell RealityKit how to render the entity. For example, to set the entity's base color, a
shader function calls params.surface().set_base_color().
RealityKit uses default values for any rendering attribute that your shader function doesn't call,
so if a surface shader fails to call set_base_color(), for example, that results in RealityKit
drawing your entity as a white object, regardless of the base color values you set on the custom
material.

Member Functions
texture::textures textures() const thread

Retrieves an object the framework uses to pass textures from a custom material
to a surface shader.

surface::uniforms uniforms() const thread
Retrieves an object the framework uses to pass entity-specific and global

constant to shader functions.
surface::geometry geometry() const thread

Retrieves geometry properties for the current fragment.
material::material_parameters material_constants() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 10 133

An object the framework uses to pass constant, non-texture values from the
entity’s material to the surface shader.

surface::surface_properties surface() thread
Retrieves an object the surface shader uses to specify outputs values.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 11 133

Member Function

surface_parameters::textures()
Retrieves an object the framework uses to pass textures from a custom material to
a surface shader.

Declaration

texture::textures textures() const thread

Overview
This function returns a read-only object that provides access to all the textures from the
shader’s material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 12 133

Member Function

surface_parameters::uniforms()
Retrieves an object the framework uses to pass entity-specific and global constant
to shader functions.

Declaration

surface::uniforms uniforms() const thread

Overview
This function returns a read-only object that provides access to values that are constant across
all vertices and fragments. For example, it might return the material’s custom value, global
values — like the current elapsed time — as well as utilities the surface shader uses to convert
between different coordinate spaces.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 13 133

Member Function

surface_parameters::geometry()
Retrieves geometry properties for the current fragment.

Declaration

surface::geometry geometry() const thread

Overview
This function returns a read-only object that holds per-vertex data for the entity, for example,
the entity's UV coordinates, vertex positions, and vertex colors. The values that this object
returns are interpolated by Metal for the current fragment, based on its position relative to the
three vertices that make up its triangle:

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 14 133

Member Function

surface_parameters::material_constants()
An object the framework uses to pass constant, non-texture values from the
entity’s material to the surface shader.

Declaration

material::material_parameters material_constants() const thread

Overview
This function returns a read-only object the shader uses to retrieve non-texture values, such as
base color tint and roughness scale, from the entity’s material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 15 133

Member Function

surface_parameters::surface()
Retrieves an object the surface shader uses to specify outputs values.

Declaration

surface::surface_properties surface() thread

Overview
This function returns an object the surface shader uses to specify final rendering values — for
example, base color and roughness — for the current fragment.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 16 133

Struct

uniforms
An object the framework uses to pass constant values into a surface shader.

Namespace

realitykit::surface

Declaration

struct uniforms

Overview
This object holds values that are constant across all vertices and fragments, as well as matrices
the surface shader uses to convert between different coordinate spaces.

Member Functions
float time() const thread

Returns the elapsed time in seconds.
float4 custom_parameter() const thread

Returns the custom vector from the entity’s material.
metal::float4x4 model_to_world() const thread

Returns a matrix that transforms values from model space into world space.
metal::float4x4 model_to_view() const thread

Returns a matrix that transforms values from model space into view space.
metal::float4x4 world_to_view() const thread

Returns a matrix that transforms values from model space into view space.
metal::float4x4 view_to_projection() const thread

Returns a matrix that transforms values from view space into projection space.
metal::float4x4 projection_to_view() const thread

Returns a matrix that transforms values from projection space into view space.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 17 133

Member Function

uniforms::time()
Returns the elapsed time in seconds.

Declaration

float time() const thread

Overview
This function returns the number of seconds that have elapsed since RealityKit began rendering
the current scene.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 18 133

Member Function

uniforms::custom_parameter()
Returns the custom vector from the entity’s material.

Declaration

float4 custom_parameter() const thread

Overview
This Swift code demonstrates how to set the custom value using a SIMD4<Float> vector:

customMaterial.custom.value = SIMD4<Float>(x: 0.25,
 y: 0.25,
 z: 0.25,
 w: 1.0)
The following Metal code demonstrates how to retrieve that vector value in a surface shader:

float4 customVector = params.uniforms().custom_parameter();

You can also use this custom parameter to pass up to four individual, scalar values instead of a
vector value. The following code demonstrates how to set individual values on a custom
material in Swift:

customMaterial.custom.value[0] = 0.25
customMaterial.custom.value[1] = 0.75

This Metal code demonstrates how to retrieve those individual scalar values in a surface shader
function:

float value = params.uniforms().custom_parameter()[0];
float otherValue = params.uniforms().custom_parameter()[1];

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 19 133

Member Function

uniforms::model_to_world()
Returns a matrix that transforms values from model space into world space.

Declaration

metal::float4x4 model_to_world() const thread

Overview
This function returns a matrix you can use to convert any model-space vector or matrix to world
space using matrix multiplication. The following Metal code demonstrates how to use this
matrix to convert a vector from model space to world space:

 auto modelToWorld = params.uniforms().model_to_world();
 float4 myVectorWorld = (myVector * modelToWorld);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
model_to_world, but not a float3. If you need to convert a set of Cartesian coordinates
stored in a float3, convert it to a float4 before multiplying, by padding the vector with an
extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto modelToWorld = params.uniforms().model_to_world();
 float3 myVectorWorld = (myVector * worldToView).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 20 133

Member Function

uniforms::model_to_view()
Returns a matrix that transforms values from model space into view space.

Declaration

metal::float4x4 model_to_view() const thread

Overview
This function returns a matrix you can use to convert any model-space vector or matrix to view
space using matrix multiplication. The following Metal code demonstrates how to use this
matrix to convert a vector from model space to view space:

 auto modelToView = params.uniforms().model_to_view();
 float4 myVectorView = (myVector * modelToView);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
model_to_view, but not a float3. If you need to convert a set of Cartesian coordinates
stored in a float3, convert it to a float4 before multiplying, by padding the vector with an
extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto modelToView = params.uniforms().model_to_view();
 float3 myVectorView = (myVector * modelToView).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 21 133

Member Function

uniforms::world_to_view()
Returns a matrix that transforms values from world space into view space.

Declaration

metal::float4x4 world_to_view() const thread

Overview
This function returns a matrix you can use to convert any world-space vector or matrix to view
space using matrix multiplication. The following Metal code demonstrates how to use this
matrix to convert a vector from world space to view space:

 auto worldToView = params.uniforms().world_to_view();
 float4 myVectorView = (myVector * worldToView);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by world_to_view,
but not a float3. If you need to convert a set of Cartesian coordinates stored in a float3,
convert it to a float4 before multiplying, by padding the vector with an extra 1.0 value, like
this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto worldToView = params.uniforms().world_to_view();
 float3 myVectorView = (myVector * worldToView).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 22 133

Member Function

uniforms::view_to_projection()
Returns a matrix that transforms values from view space into projection space.

Declaration

metal::float4x4 view_to_projection() const thread

Overview
This function returns a matrix you can use to convert any view-space vector or matrix to
projection space using matrix multiplication. Projection space is a flattened 2D representation of
a 3D scene. RealityKit creates this by applying a perspective transform that makes entities that
are farther from the camera appear smaller.
The following Metal code demonstrates how to use this matrix to convert a vector from view
space to projection space:

 auto viewToProjection = params.uniforms().view_to_projection();
 float4 myVectorProjection = (myVector * viewToProjection);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
view_to_projection, but not a float3. If you need to convert a set of Cartesian
coordinates stored in a float3, convert it to a float4 before multiplying, by padding the
vector with an extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto viewToProjection = params.uniforms().view_to_projection();
 float3 myVectorProjection = (myVector * viewToProjection).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 23 133

Member Function

uniforms::projection_to_view()
Returns a matrix that transforms values from projection space into view space.

Declaration

metal::float4x4 projection_to_view() const thread

Overview
This function returns a matrix that you can use to convert any projection-space vector or matrix
to view space. The following Metal code demonstrates how to use this matrix to convert a
vector from projection space to view space:

 auto projectionToView = params.uniforms().projection_to_view();
 float4 myVectorView = (myVector * projectionToView);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
projection_to_view, but not a float3. If you need to convert a set of Cartesian
coordinates stored in a float3, convert it to a float4 before multiplying, by padding the
vector with an extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto projectionToView = params.uniforms().projection_to_view();
 float3 myVectorView = (myVector * projectionToView).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 24 133

Struct

geometry
An object that contains per-vertex values for the current fragment.

Namespace

realitykit::surface

Declaration

struct geometry

Overview
This object returns per-vertex values from the entity, for example, the UV texture coordinates,
vertex position, and vertex color. These functions return values that Metal has interpolated for
the current fragment, based on its position relative to the three vertices that make up the
fragment's triangle.

Member Functions
float4 screen_position() const thread

Returns the fragment's position in screen space.
float3 world_position() const thread

Returns the fragment's position in world space.
float3 model_position() const thread

Returns the fragment's position in model space.
float4 color() const thread

Returns the fragment's vertex color.
float3 normal() const thread

Returns the normal of the fragment's geometry.
float3 tangent() const thread

Returns the tangent of the fragment's geometry.
float3 bitangent() const thread

Returns the bitangent of the fragment's geometry.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 25 133

float2 uv0() const thread
Returns the entity’s primary UV texture coordinate for the fragment.

float2 uv1() const thread
Returns the entity’s secondary UV texture coordinate for the fragment.

float4 custom_attribute() const thread
Returns a user attribute set by the geometry modifier.

float3 view_direction() const thread
Returns a vector that points from this fragment’s position to the viewer.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 26 133

Member Function

geometry::screen_position()
Returns the fragment's position in screen space.

Declaration

float4 screen_position() const thread

Overview
Returns the fragment’s projected coordinates in screen space. This returns the [[position]]
input attribute from the fragment shader.
To retrieve just the two-dimensional screen position of the fragment, use the X and Y values, as
the following Metal code demonstrates:

float2 screenCoords = params.geometry().screen_position().xy;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 27 133

Member Function

geometry::world_position()
Returns the fragment's position in world space.

Declaration

float3 world_position() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 28 133

Member Function

geometry::model_position()
Returns the fragment's position in model space.

Declaration

float3 model_position() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 29 133

Member Function

geometry::color()
Returns the fragment's interpolated vertex color.

Declaration

float4 color() const thread

Overview
This function returns the color of the current fragment. This method interpolates its return value
from the vertex colors of the three vertices that make up the fragment’s triangle:

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 30 133

Member Function

geometry::normal()
Returns the normal of the fragment's geometry.

Declaration

float3 normal() const thread

Overview
This function returns the fragment’s normal vector. The system calculates this value by
interpolating the vertex normals of the three vertices that make up the fragment's triangle,
based on the fragment's position relative to those vertices.

Note: This function's return value is a calculated value the system has inferred from the
vertex normals. It’s not the surface normal stored in the material's normal map.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 31 133

Member Function

geometry::tangent()
Returns the tangent of the fragment's geometry.

Declaration

float3 tangent() const thread

Overview
This function returns the fragment’s tangent vector. The system calculates this value by
interpolating the vertex tangents of the three vertices that make up the fragment's triangle,
based on the fragment's position relative to those vertices.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 32 133

Member Function

geometry::bitangent()
Returns the bitangent of the fragment's geometry.

Declaration

float3 bitangent() const thread

Overview
This function returns the fragment’s bitangent vector. The system calculates this value by
interpolating the vertex bitangents of the three vertices that make up the fragment's triangle,
based on the fragment's position relative to those vertices.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 33 133

Member Function

geometry::uv0()
Returns the entity’s primary UV texture coordinate for the fragment.

Declaration

float2 uv0() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 34 133

Member Function

geometry::uv1()
Returns the entity’s secondary UV texture coordinate for the fragment.

Declaration

float2 uv1() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 35 133

Member Function

geometry::custom_attribute()
Returns a user attribute set by the geometry modifier.

Declaration

float4 custom_attribute() const thread

Overview
A geometry modifier can pass a custom per-vertex value to your surface shader by calling
params.geometry().set_custom_attribute(). It returns a value the system
interpolates from the values you set in the geometry modifier. The system calculates the value
based on the current fragment's position relative to the three vertices that make up its triangle.
If your geometry modifier doesn't call params.geometry().set_custom_attribute(),
this function returns (0.0, 0.0, 0.0).

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 36 133

Member Function

geometry::view_direction()
Returns a vector that points from this fragment’s position to the viewer.

Declaration

float3 view_direction() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 37 133

Struct

surface_properties
An object the surface shader uses to specify the rendering attributes.

Namespace

realitykit::surface

Declaration

struct surface_properties

Use this object to set and access the final rendering attribute values for the current fragment.

Member Functions
half3 base_color() const thread

Returns the base color of the fragment.
void set_base_color(half3 value) const thread

Sets the base color for the fragment.
half3 emissive_color() const thread

Returns the emissive color of the fragment.
void set_emissive_color(half3 value) thread

Sets the emissive color for the fragment.
float3 normal() thread

Returns the tangent-space normal of the fragment.
void set_normal(float3 value) thread

Sets the tangent-space normal of the fragment.
half roughness() const thread

Returns the roughness value of the fragment.
void set_roughness(half value) thread

Sets the roughness value for the fragment.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 38 133

half metallic() const thread
Returns the reflectiveness of the fragment.

void set_metallic(half value) thread
Sets the reflectiveness of the fragment.

half ambient_occlusion() const thread
Returns the ambient occlusion value for the fragment.

set_ambient_occlusion(half value) thread
Sets the ambient occlusion value of the fragment.

half specular() const thread
Returns the specular value of the fragment.

void set_specular(half value) thread
Set the specular value of the fragment.

half clearcoat() const thread
Returns the clearcoat value for the fragment.

void set_clearcoat(half value) thread
Sets the clearcoat value for the fragment.

half clearcoat_roughness() const thread
Returns the clearcoat roughness value for the fragment.

void set_clearcoat_roughness(half value) thread
Sets the clearcoat roughness value for the fragment.

half opacity() const thread
Returns the opacity for the fragment.

void set_opacity(half value) thread
Sets the opacity of the fragment.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 39 133

Member Function

surface_properties::base_color()
Returns the base color of the fragment.

Declaration

half3 base_color() const thread

The base color of an entity is the color of the entity before RealityKit applies any lighting or
other rendering calculations. This function returns the base color value RealityKit uses to render
the fragment. If you don’t call set_base_color(), this function returns a value of (1.0,
1.0, 1.0).

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 40 133

Member Function

surface_properties::set_base_color()
Set the base color for the fragment.

Declaration

void set_base_color(half3 value) const thread

Parameters
value

An RGB color as a three-component vector. All through components need to be between
0.0 and 1.0.

Overview
The base color of an entity is the color of the entity before RealityKit applies any lighting or
rendering calculations. Use this function to set the base color property for rendering. RealityKit
only uses value if the material's lighting model is .lit or .clearcoat. If you call this
function for a material set to .unlit, RealityKit ignores it.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 41 133

Member Function

surface_properties::emissive_color()
Returns the emissive color scale of the fragment.

Declaration

half3 emissive_color() const thread

Overview
This function returns the emissive color value RealityKit uses to render this fragment. If you
don't call set_emissive_color(), this returns a value of (1.0, 1.0, 1.0).
When you use the .lit or .clearcoat lighting model and this property has a value other
than (0.0, 0.0, 0.0), the system gives the fragment the appearance of emitting light, such
as objects with LEDs or computer screens.
When you use the .unlit lighting model, this property holds the final color that RealityKit
renders for this fragment.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 42 133

Member Function

surface_properties::set_emissive_color()
Sets the emissive color for the fragment.

Declaration

void set_emissive_color(half3 value) thread

Parameters
value

An RGB color as a 3-component vector. All three components need to be between 0.0
and 1.0.

Overview
Use this function to set the emissive color property for rendering.
When you use the .lit or .clearcoat lighting model and this property has a value other
than (0.0, 0.0, 0.0), the fragment has the appearance of emitting light, such as objects
with LEDs or computer screens.
When you specify the .unlit lighting model, use this function to specify the color that
RealityKit uses to render the fragment.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 43 133

Member Function

surface_properties::normal()
Returns the tangent-space normal of the current fragment.

Declaration

float3 normal() thread

Normal mapping is a real-time rendering technique that captures fine surface details for a
model by using a texture instead of increasing the number of polygons in the model. It stores
surface normals, which are vectors perpendicular to the surface of the model, created from a
much higher-resolution version of the same 3D object. A normal map stores one normal vector
per pixel by storing the vector’s X, Y, and Z values as the R, G, and B components of the
corresponding pixel in the UV-mapped image.
Use this function to retrieve the normal value for the current fragment. The value this function
returns will have R and G channels with values between -1.0 and 1.0 and a B channel with a
value between 0.0 and 1.0.

Note: A surface vector with a Z-value less than 0.0 points away from the viewer and
therefore has no effect on lighting calculations, which RealityKit computes based
on the viewer’s location.

This function returns the normal value for the current fragment. If your surface shader doesn’t
call set_normal(), it returns a value of (0.0, 0.0, 1.0).

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 44 133

Member Function

surface_properties::set_normal()
Sets the tangent-space normal for the current fragment.

Declaration

void set_normal(float3 value) thread

Parameters
value

A surface normal value color as a three-component vector.

Overview
Normal mapping is a real-time rendering technique that captures fine surface details for a
model by using a texture instead of increasing the number of polygons in the model. It stores
surface normals, which are vectors perpendicular to the surface of the model, created from a
much higher-resolution version of the same 3D object. A normal map stores one normal vector
per pixel by storing the vector’s X, Y, and Z values as the R, G, and B components of the
corresponding pixel in the UV-mapped image.
Use this function to set the normal value for the current fragment. Typically, you sample this
value from a UV-mapped normal map texture. RealityKit uses the value you pass to this function
in lighting calculations. This function expects normal map values where the X and Y values are
between -1.0 and 1.0 and the Z value is between 0.0 and 1.0.

Note: A surface vector with a Z-value less than 0.0 points away from the viewer and
therefore has no effect on lighting calculations, which RealityKit computes based
on the viewer’s location.

RealityKit uses the value passed to this function in the .lit and .clearcoat lighting models.
If you call this function with a material that uses the .unlit lighting model, RealityKit ignores it.
When you sample values from a normal map texture, all three channels are between 0.0 and
1.0, so you must use the unpack_normal function to convert the sampled value before
passing it to this function, as demonstrated by the following Metal code:

 // Retrieve the texture coordinates for this fragment.
 float2 uv = params.geometry().uv0();

 // Invert the y-axis for models loaded from a USDZ
 // or .reality file.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 45 133

 uv.y = 1.0 - uv.y;

 // Sample the normal map texture.
 auto tex = params.textures();
 half3 color = (half3)tex.normal()
 .sample(textureSampler, uv).rgb;

 // Convert the normal to the correct format.
 float3 normal = (float3)unpack_normal(color);

 // Set the fragment's normal using the converted value.
 params.surface().set_normal(normal);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 46 133

Member Function

surface_properties::roughness()
Returns the roughness value of the fragment.

Declaration

half roughness() const thread

The roughness property represents the degree to which the surface of the entity scatters light
that it reflects. A material with a roughness of 1.0 has a matte appearance, whereas one with
a roughness of 0.0 has a shiny appearance, as demonstrated by the following illustration:

This function returns the roughness value RealityKit uses to render the fragment. If you don’t
call set_roughness(), this function returns a value of 0.0.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 47 133

Member Function

surface_properties::set_roughness()
Set the roughness value for the fragment.

Declaration

void set_roughness(half value) thread

Parameters
value

The roughness of the fragment.

Overview
The roughness property represents the degree to which the surface of the entity scatters light
that it reflects. A material with a roughness of 1.0 has a matte appearance, whereas one with
a roughness of 0.0 has a shiny appearance, as demonstrated by the following illustration:

Use this function to set the roughness property for rendering. RealityKit uses the value passed
to this function in the .lit and .clearcoat lighting models. If you call this function with a
material that uses the .unlit lighting model, RealityKit ignores it.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 48 133

Member Function

surface_properties::metallic()
Returns the reflectiveness of the fragment.

Declaration

half metallic() const thread

The metallic property represents the reflectiveness of the fragment. This function returns
the metallic value RealityKit uses to render this fragment. A value of 1.0 represents a very
reflective object, whereas a value of 0.0 represents an object that doesn’t reflect the
environment at all (a dielectric material), other than highlights from direct light sources, as the
following illustration demonstrates:

If you don't call set_metallic(), this function returns a value of 0.0.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 49 133

Member Function

surface_properties::set_metallic()
Sets the reflectiveness of the fragment.

Declaration

void set_metallic(half value) thread

Parameters
value

The reflectiveness of the fragment.

Overview
The metallic property represents the reflectiveness of the fragment. This function returns
the metallic value RealityKit uses to render this fragment. A value of 1.0 represents a very
reflective object, whereas a value of 0.0 represents an object that doesn’t reflect the
environment at all (a dielectric material), other than highlights from direct light sources, as the
following illustration demonstrates:

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 50 133

Use this function to set the metallic property for rendering. RealityKit uses the value passed to
this function in the .lit and .clearcoat lighting models. If you call this function with a
material that uses the .unlit lighting model, RealityKit ignores it.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 51 133

Member Function

surface_properties::ambient_occlusion()
Returns the ambient occlusion value of the fragment.

Declaration

half ambient_occlusion() const thread

Overview
Ambient occlusion represents the entity’s exposure to ambient light. A value of black (0.0), the
darkest pixel value in a grayscale image, represents parts of the model that receive no ambient
light because they may be crevices, dents, or recessed areas, or another part of the same entity
prevents ambient light from reaching it. Ambient occlusion values of white (1.0), the lightest
pixel value, represent flat portions of the model that receive full ambient light.
This function returns the ambient occlusion value that RealityKit uses to render this fragment. If
you don't call set_ambient_occlusion(), it returns a value of 1.0.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 52 133

Member Function

surface_properties::set_ambient_occlusion()
Sets the ambient occlusion value for the fragment.

Declaration

set_ambient_occlusion(half value) thread

Parameters
value

The ambient occlusion value for the fragment.

Overview
Ambient occlusion represents the entity’s exposure to ambient light. A value of black (0.0), the
darkest pixel value in a grayscale image, represents parts of the model that receive no ambient
light because they may be crevices, dents, or recessed areas, or another part of the same entity
prevents ambient light from reaching it. Ambient occlusion values of white (1.0), the lightest
pixel value, represent flat portions of the model that receive full ambient light.
Use this function to set the ambient occlusion property for the fragment. RealityKit uses the
value passed to this function in the .lit and .clearcoat lighting models. If you call this
function with a material that uses the .unlit lighting model, RealityKit ignores it.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 53 133

Member Function

surface_properties::specular()
Returns the specular value of the fragment.

Declaration

half specular() const thread

In physically based rendering (PBR), the bright highlights from light sources reflecting off shiny
or reflective objects (specular highlights) primarily come from the object’s roughness value.
RealityKit renders materials that have a low roughness value with specular highlights, based
on the environment lighting and the shape of the entity. As a result, for most materials, you
won’t need to specify a specular value when using PhysicallyBasedMaterial.
For some types of dielectric (nonmetallic) materials, like facet-cut glass or gems, PBR
algorithms don’t create bright enough specular highlights if you just use roughness. To
accurately simulate those types of materials, use this value to specify additional specular
highlights.
If you don't call set_specular(), this function returns a value of 0.0.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 54 133

Member Function

surface_properties::set_specular()
Sets the specular value for the fragment.

Declaration

void set_specular(half value) thread

Parameters
value

The specular value for the fragment.

Overview
In physically based rendering (PBR), the bright highlights from light sources reflecting off shiny
or reflective objects (specular highlights) primarily come from the object’s roughness value.
RealityKit renders materials that have a low roughness value with specular highlights, based
on the environment lighting and the shape of the entity. As a result, for most materials, you
won’t need to specify a specular value when using PhysicallyBasedMaterial.
For some types of dielectric (nonmetallic) materials, like facet-cut glass or gems, PBR
algorithms don’t create bright enough specular highlights if you just use roughness. To
accurately simulate those types of materials, use this function to specify additional specular
highlights.
Use this function to set the specular property for rendering. RealityKit uses the value passed to
this function in the .lit and .clearcoat lighting models. If you call this function with a
material that uses the .unlit lighting model, RealityKit ignores it.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 55 133

Member Function

surface_properties::clearcoat()
Returns the clearcoat value of the fragment.

Declaration

half clearcoat() const thread

An entity with a custom material renders with a clearcoat if you set the lighting model
to .clearcoat. A clearcoat is a separate layer of transparent specular highlights that
simulates a clear coating, like on a car or the surface of lacquered objects.
This function returns the clearcoat value for this fragment. If you don't call set_clearcoat(),
this function returns 0.0.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 56 133

Member Function

surface_properties::set_clearcoat()
Sets the clearcoat value for the fragment.

Declaration

void set_clearcoat(half value) thread

Parameters
value

The clearcoat value for the fragment.

Overview
An entity with a custom material renders with a clearcoat if you set the lighting model
to .clearcoat. A clearcoat is a separate layer of transparent specular highlights that
simulates a clear transparent coating, like on a car or the surface of lacquered objects.
Use this function to set the clearcoat value for the current fragment. With materials that use
the .unlit or .lit lighting models, calling this function has no effect.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 57 133

Member Function

surface_properties::clearcoat_roughness()
Returns the clearcoat roughness value of the fragment.

Declaration

half clearcoat_roughness() const thread

An entity with a custom material renders with a clearcoat if you set the lighting model
to .clearcoat. A clearcoat is a separate layer of transparent specular highlights that
simulates a clear coating, like on a car or the surface of lacquered objects.
Clearcoat roughness controls to what degree the clearcoat scatters light that bounces off of it,
which softens and spreads out the highlights. The function returns the current clearcoat
roughness value for the fragment.
If the value returned by this function is greater than 0.0, the value returned by clearcoat()
is also greater than 0.0, and the lighting model is set to .clearcoat, RealityKit renders a
clearcoat for the entity as a separate layer just above the surface.
If you don't call set_clearcoat_roughness(), this function returns 0.0.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 58 133

Member Function

surface_properties::set_clearcoat_roughness()
Set the clearcoat roughness value for this fragment.

Declaration

void set_clearcoat_roughness(half value) thread

Parameters
value

A scalar value that represents the clearcoat roughness for this fragment.

Overview
An entity with a custom material renders with a clearcoat if you set the lighting model
to .clearcoat. A clearcoat is a separate layer of transparent specular highlights that
simulates a clear coating, like on a car or the surface of lacquered objects. With materials that
use the .unlit or .lit lighting model, calling this function has no effect.
Use this function to set the clearcoat roughness value for the fragment. Clearcoat roughness
controls how much the clearcoat scatters light that bounces off of it, which softens and spreads
out the highlights. Calling this function has no effect if the fragment's clearcoat value is 0.0
or you don’t set the material’s lighting model to .clearcoat.
The following Metal code demonstrates how to replicate the clearcoat behavior of
PhysicallyBasedMaterial in a surface shader:

 // Retrieve the clearcoat scale and roughness from
 // the CustomMaterial.
 float clearcoatScale = params.material_constants()
 .clearcoat_scale();
 float clearcoatRoughnessScale = params.material_constants()
 .clearcoat_roughness_scale();

 // Retrieve the entity's texture coordinates.
 float2 uv = params.geometry().uv0();

 // Entities you load from a USDZ or .reality file use texture
 // coordinates with a flipped y-axis. This compensates for that.
 uv.y = 1.0 - uv.y;

 // Sample a value from the clearcoat and clearcoat roughness
 // textures.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 59 133

 auto tex = params.textures();
 half clearcoat = tex.clearcoat().sample(textureSampler, uv).r;
 half clearcoatRoughess = tex.clearcoat_roughness()
 .sample(textureSampler, uv).r;

 // Multiply the sampled clearcoat value by the scale, and
 // assign it.
 clearcoat *= clearcoatScale;
 params.surface().set_clearcoat(clearcoat);

 // Multiply the scale and sampled texture value from the
 // clearcoat roughness texture, and assign it.
 clearcoatRoughess *= clearcoatRoughnessScale;
 params.surface().set_clearcoat_roughness(clearcoatRoughess);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 60 133

Member Function

surface_properties::opacity()
Returns the opacity value of the fragment.

Declaration

half opacity() const thread

This function returns the opacity value for the current fragment, which controls whether the
entity is transparent or translucent. A value of 1.0 represents a completely opaque fragment,
where the objects behind the entity (from the perspective of the camera) don’t show through. A
value of 0.0 represents a completely transparent fragment, which means the objects behind
this entity are visible through it. Other values represent partially transparent fragments.
If you don't call set_opacity(), this function returns 1.0.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 61 133

Member Function

surface_properties::set_opacity()
Sets the opacity value for the fragment.

Declaration

void set_opacity(half value) thread

Parameters
value

A scalar value that represents the opacity for this fragment.

Overview
Use this function to set the opacity for the current fragment. Setting this value to 0.0 causes
this fragment to be completely transparent. Setting it to 1.0 causes this fragment to be
completely opaque. Values between 0.0 and 1.0 cause the fragment to be translucent, with
objects behind the entity showing through with less intensity as the value approaches 1.0.
To replicate the behavior of PhysicallyBasedMaterial when calling this function, retrieve
both the opacity scale and the opacityThreshold from the material, and sample the
opacity texture. If the opacityThreshold is greater than 0.0, compare the sampled
value to the threshold, and set opacity to either 1.0, if the value is greater than the threshold, or
0.0 otherwise. If opacityThreshold is equal to 0.0, multiply the opacity scale and the
sampled value together to get the final opacity value. The following code demonstrates this
process:

// Retrieve the opacity scale from the CustomMaterial.
float opacityScale = params.material_constants().opacity_scale();
float opacityThreshold =
params.material_constants().opacity_threshold();

// Retrieve the entity's texture coordinates.
float2 uv = params.geometry().uv0();

// Entities you load from a USDZ or .reality file use texture
// coordinates with a flipped y-axis. This compensates for that.
uv.y = 1.0 - uv.y;

auto tex = params.textures();
half opacity = tex.opacity().sample(textureSampler, uv).r;

if (opacityThreshold > 0.0) {

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 62 133

 // If the opacity threshold is greater than 0, use masking
 // behavior and set the opacity to either 1.0 or 0.0, depending
 // on the value of the opacity threshold. Ignore opacity scale
 // when using a mask.

 if (opacity > opacityThreshold) {
 params.surface().set_opacity(1.0);
 } else {
 // Setting the opacity to 0.0 using PBR rendering (.lit
 // or .clearcoat) results in a transparent glass-like
 // object. That means that RealityKit might render some
 // value for this fragment due to specular highlights or
 // clearcoat. For masking behavior, completely discard the
 // transparent fragment.
 discard_fragment();
 }
} else {
 // If the opacity threshold is 0, then multiply opacity by
 // scale.
 opacity *= opacityScale;
}
params.surface().set_opacity(opacity);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 63 133

Geometry Modifier APIs

A geometry modifier is an optional Metal shader function for custom materials. Geometry
modifiers run during vertex shader execution, which means they execute once every frame for
every vertex in the entity being rendered.
A geometry modifier can change the position of any vertex in the entity by setting an offset
value for it. Offsetting vertices allows you to change the size or shape of your entity before
RealityKit renders it.
Geometry modifiers can also set or calculate new per-vertex values, such as new vertex colors
or vertex normals. RealityKit uses these modified values to render the entity. The modified
values are also available in your surface shader, where Metal automatically interpolates the
value for each fragment based on its relative position to the vertices that make up its triangle.
Changes to vertex data that you make in a geometry modifier are transient and don’t affect
physics calculations, collisions, or the size and shape of the entity in your RealityKit scene.
Once RealityKit renders the current frame, the offsets are discarded.
For more information on using shader functions with custom materials, see Taking Control of
RealityKit Rendering Using Custom Materials.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 64 133

https://developer.apple.com/documentation/realitykit/modelcomponent/taking_control_of_realitykit_rendering_using_custom_materials
https://developer.apple.com/documentation/realitykit/modelcomponent/taking_control_of_realitykit_rendering_using_custom_materials

Struct

geometry_parameters
An object the framework uses to pass data into a geometry modifier function.

Namespace

realitykit

Declaration

struct geometry_parameters

Overview
This struct holds all the information that RealityKit passes into a geometry modifier. The
available data is grouped into sub-objects of related types. For example, you can call
textures() to access textures from your custom material and material_parameters()
to access the material's non-texture values, like the the base color tint or roughness scale.
Geometry modifier functions are called by RealityKit during vertex shader execution, which
means that a geometry modifier function will be called once for every vertex in the entity.
A geometry modifier is optional and can be used to offset the position of an entity's vertices. To
offset the position of the current entity, call set_world_position_offset() or
set_model_position_offset() on the object returned by the geometry() function.
A geometry modifier can also set or calculate new per-vertex values, such as vertex color or
vertex normal. RealityKit uses the modified values to render the entity. RealityKit also makes
modified values available in the surface shader. Metal automatically interpolates the values
based on the fragment’s relative position to the three vertices that make up its triangle.
Changes you make in the geometry modifier only affect rendering and don’t affect physics
calculations or collisions in the RealityKit scene.

Note: If you offset vertices in a way that changes the shape of your entity, you may
have to recalculate and set that vertex’s normal, tangent, and bitangent values to
ensure that lighting and other calculations have access to the correct value for
the vertex’s new position.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 65 133

Member Functions
geometry_modifier::uniforms uniforms() const thread

Retrieves an object that holds entity-specific and global constants.
texture::textures textures() const thread

Retrieves a data object that holds textures from the custom material.
geometry_modifier::geometry geometry() thread

Retrieves an object that holds geometry information about the current vertex.
material::material_parameters material_constants() const thread

An object that holds entity-specific and global constants.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 66 133

Member Function

geometry_parameters::uniforms()
Retrieves an object that holds entity-specific and global constants.

Declaration

geometry_modifier::uniforms uniforms() const thread

Overview
This function returns a read-only object that provides access to:

• Entity-specific values, such as the entity’s texture coordinates
• Entity-specific utility functions, such as ones that let you convert values between

model space and world space
• Global values, such as the current elapsed time

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 67 133

Member Function

geometry_parameters::textures()
Retrieves a data object that holds textures from the custom material.

Declaration

texture::textures textures() const thread

Overview
This function returns a read-only object that provides access to the textures set on the shader’s
custom material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 68 133

Member Function

geometry_parameters::geometry()
Retrieves an object that holds geometry information about the current vertex.

Declaration

geometry_modifier::geometry geometry() thread

Overview
This function returns an object that provides access to the geometry data for the current vertex
and allows modifying per-vertex values, like vertex color and vertex normal.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 69 133

Member Function

geometry_parameters::material_constants()
An object that holds entity-specific and global constants.

Declaration

material::material_parameters material_constants() const thread

Overview
This function returns a read-only object that holds entity-specific constants from the entity’s
material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 70 133

Struct

uniforms
An object used to pass data into a geometry modifier function.

Namespace

realitykit::geometry_modifier

Declaration

struct uniforms

Overview
This object holds values that are constant across all vertices and all fragments. It also returns
matrices for converting vectors and other matrices between different coordinate spaces.

Member Functions
float time() const thread

Returns the elapsed time in seconds.
float4 custom_parameter() const thread

Returns the custom vector from the entity’s material.
metal::float4x4 model_to_world() const thread

Returns a matrix that transforms values from model space into world space.
metal::float4x4 model_to_view() const thread

Returns a matrix that transforms values from model space into view space.
metal::float4x4 world_to_view() const thread

Returns a matrix that transforms values from world space into view space.
metal::float4x4 view_to_projection() const thread

Returns a matrix that transforms values from view space into projection space.
metal::float4x4 projection_to_view() const thread

Returns a matrix that transforms values from projection space into view space.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 71 133

Member Function

uniforms::time()
Returns the elapsed time in seconds.

Declaration

float time() const thread

Overview
This function returns the number of seconds that have elapsed since RealityKit began rendering
the current scene.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 72 133

uniforms::custom_parameter()
Returns the custom vector from the entity’s material.

Declaration

float4 custom_parameter() const thread

Overview
This function returns value from the custom property of the entity's material. The following
Swift code demonstrates how to set this value on a custom material with a single
SIMD4<Float> vector:

customMaterial.custom.value = SIMD4<Float>(x: 0.25,
 y: 0.25,
 z: 0.25,
 w: 1.0)

The following Metal code demonstrates how to retrieve that vector value in your surface shader
function:

float4 customVector = params.uniforms().custom_parameter();

You can also use the custom parameter to pass up to four individual scalar values instead of a
vector value. The following code demonstrates how to set individual values on a custom
material in Swift:

customMaterial.custom.value[0] = 0.25
customMaterial.custom.value[1] = 0.75

And the following Metal code demonstrates how to retrieve those individual scalar values in a
surface shader function:

float value = params.uniforms().custom_parameter()[0];
float otherValue = params.uniforms().custom_parameter()[1];

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 73 133

Member Function

uniforms::model_to_world()
Returns a matrix that transforms values from model space into world space.

Declaration

metal::float4x4 model_to_world() const thread

Overview
This function returns a matrix you can use to convert any model-space vector or matrix to world
space using matrix multiplication. The following Metal code demonstrates how to use this
matrix to convert a vector from model space to world space:

 auto modelToWorld = params.uniforms().model_to_world();
 float4 myVectorWorld = (myVector * modelToWorld);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
model_to_world, but not a float3. If you need to convert a set of Cartesian coordinates
stored in a float3, convert it to a float4 before multiplying, by padding the vector with an
extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto modelToWorld = params.uniforms().model_to_world();
 float3 myVectorWorld = (myVector * worldToView).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 74 133

Member Function

uniforms::model_to_view()
Returns a matrix that transforms values from model space into view space.

Declaration

metal::float4x4 model_to_view() const thread

Overview
This function returns a matrix you can use to convert any model-space vector or matrix to view
space using matrix multiplication. The following Metal code demonstrates how to use this
matrix to convert a vector from model space to view space:

 auto modelToView = params.uniforms().model_to_view();
 float4 myVectorView = (myVector * modelToView);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
model_to_view, but not a float3. If you need to convert a set of Cartesian coordinates
stored in a float3, convert it to a float4 before multiplying, by padding the vector with an
extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto modelToView = params.uniforms().model_to_view();
 float3 myVectorView = (myVector * modelToView).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 75 133

Member Function

uniforms::world_to_view()
Returns a matrix that transforms values from world space into view space.

Declaration

metal::float4x4 world_to_view() const thread

This function returns a matrix you can use to convert any world-space vector or matrix to view
space using matrix multiplication. The following Metal code demonstrates how to use this
matrix to convert a vector from world space to view space:

 auto worldToView = params.uniforms().world_to_view();
 float4 myVectorView = (myVector * worldToView);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
world_to_view, but not a float3. If you need to convert a set of Cartesian coordinates
stored in a float3, convert it to a float4 before multiplying, by padding the vector with an
extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto worldToView = params.uniforms().world_to_view();
 float3 myVectorView = (myVector * worldToView).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 76 133

Member Function

uniforms::view_to_projection()
Returns a matrix that transforms values from view space into projection space.

Declaration

metal::float4x4 view_to_projection() const thread

Overview
This function returns a matrix you can use to convert any view-space vector or matrix to
projection space using matrix multiplication. Projection space flattens the 3D scene into a 2D
space by applying a perspective transform that makes entities that are farther away from the
camera appear smaller.
The following Metal code demonstrates how to use this matrix to convert a vector from view
space to projection space:

 auto viewToProjection = params.uniforms().view_to_projection();
 float4 myVectorProjection = (myVector * viewToProjection);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
view_to_projection, but not a float3. If you need to convert a set of Cartesian
coordinates stored in a float3, convert it to a float4 before multiplying, by padding the
vector with an extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto viewToProjection = params.uniforms().view_to_projection();
 float3 myVectorProjection = (myVector * viewToProjection).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 77 133

Member Function

uniforms::projection_to_view()
Returns a matrix that transforms values from projection space into view space.

Declaration

metal::float4x4 projection_to_view() const thread

Overview
This function returns a matrix that you can use to convert any projection-space vector or matrix
to view space. The following Metal code demonstrates how to use this matrix to convert a
vector from projection space to view space:

 auto projectionToView = params.uniforms().projection_to_view();
 float4 myVectorView = (myVector * projectionToView);

Vertex-by-matrix multiplication requires vectors that are the same size as the number of
columns in the matrix. This requirement means you can multiply a float4 by
projection_to_view, but not a float3. If you need to convert a set of Cartesian
coordinates stored in a float3, convert it to a float4 before multiplying, by padding the
vector with an extra 1.0 value, like this:

 // This code assumes there's an existing float3 called myVertex.
 float4(myVertex.x, myVertex.y, myVertex.z, 1.0);
 auto projectionToView = params.uniforms().projection_to_view();
 float3 myVectorView = (myVector * projectionToView).xyz;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 78 133

Struct

geometry
An object that contains geometry properties for the current vertex.

Namespace

realitykit::geometry_modifier

Declaration

struct geometry

Overview
This object returns values relating to the current entity’s mesh resource, such as the UV texture
coordinates. Geometry data is derived from the mesh data of the shader’s entity. The values
returned from this object's functions contain per-vertex data that RealityKit has interpolated for
the current fragment.

Member Functions
uint vertex_id() const thread

Returns the Metal vertex ID for the current vertex.
float3 model_position() const thread

Returns the position of the current vertex in model space.
float3 world_position() const thread

Returns the position of the current vertex in world space.
float3 model_position_offset() const thread

Returns the offset value for the current vertex in model space.
void set_model_position_offset(float3 value) thread

Sets the offset value for the current vertex in model space.
float3 world_position_offset() const thread

Returns the offset value for the current vertex in world space.
void set_world_position_offset(float3 value) thread

Sets the offset value for the current vertex in world space.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 79 133

float4 color() const thread
Returns the color of the current vertex.

void set_color(float4 value) thread
Sets the color for the current vertex.

float3 normal() const thread
Returns the normal value of the current vertex.

set_normal(float3 value) thread
Sets the normal value for the current vertex.

float3 tangent() const thread
Returns the tangent value for the current vertex.

void set_tangent(float3 value) thread
Sets the tangent value for the current vertex.

float3 bitangent() const thread
Returns the bitangent value for the current vertex.

void set_bitangent(float3 value) thread
Sets the bitangent value for the current vertex.

float2 uv0() const thread
Returns the primary UV texture coordinates of the current vertex.

void set_uv0(float2 value) thread
Sets the primary UV texture coordinates for the current vertex.

float2 uv1() const thread
Returns the secondary UV texture coordinates of the current vertex.

void set_uv1(float2 value) thread
Sets the secondary UV texture coordinates for the current vertex.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 80 133

Member Function

geometry::vertex_id()
Returns the Metal vertex identifier for the current vertex.

Declaration

uint vertex_id() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 81 133

Member Function

geometry::model_position()
Returns the position of the current vertex in model space.

Declaration

float3 model_position() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 82 133

Member Function

geometry::world_position()
Returns the position of the current vertex in world space.

Declaration

float3 world_position() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 83 133

Member Function

geometry::model_position_offset()
Returns the offset for the current vertex in model space.

Declaration

float3 model_position_offset() const thread

Overview
This value defaults to (0.0, 0.0, 0.0).

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 84 133

Member Function

geometry::set_model_position_offset()
Sets the offset for the current vertex in model space.

Declaration

void set_model_position_offset(float3 value) thread

Parameters
value

A vector representing the offset value for this vertex as model-space coordinates.

Overview
Before RealityKit renders the entity, it adds this value to the vertex position. Offset values are
transient and don’t persist from frame to frame.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 85 133

Member Function

geometry::world_position_offset()
Returns the offset for the current vertex in world space.

Declaration

float3 world_position_offset() const thread

Overview
This value defaults to (0.0, 0.0, 0.0).

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 86 133

Member Function

geometry::set_world_position_offset()
Sets the offset for the current vertex in world space.

Declaration

void set_model_position_offset(float3 value) thread

Parameters
value

A vector representing the offset value for this vertex as world-space coordinates.

Overview
Before RealityKit renders the entity, it adds value to the vertex position. Offset values are
transient and don’t persist from frame to frame.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 87 133

Member Function

geometry::color()
Returns the color of the current vertex.

Declaration

float4 color() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 88 133

Member Function

geometry::set_color()
Sets the color for the current vertex.

Declaration

void set_color(float4 value) thread

Parameters
value

A vector holding an RGB value representing the new color for this vertex.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 89 133

Member Function

geometry::normal()
Returns the normal vector for the current vertex.

Declaration

float3 normal() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 90 133

Member Function

geometry::set_normal()
Sets the normal value for the current vertex.

Declaration

void set_normal(float3 value) thread

Parameters
value

A vertex normal vector.

Overview
If your geometry modifier offsets vertices in a way that changes the shape of your entity, you
may need to recalculate the normal to ensure that later calculations in the fragment shader and
surface shader are using correct values.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 91 133

Member Function

geometry::tangent()
Returns the tangent vector for the current vertex.

Declaration

float3 tangent() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 92 133

Member Function

geometry::set_tangent()
Sets the tangent value for the current vertex.

Declaration

void set_tangent(float3 value) thread

Parameters
value

A vertex tangent vector.

Overview
If your geometry modifier offsets vertices in a way that changes the shape of your entity, you
may need to recalculate the tangent to ensure that later calculations in the fragment shader and
surface shader are using correct values.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 93 133

Member Function

geometry::bitangent()
Returns the bitangent vector for the current vertex.

Declaration

float3 bitangent() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 94 133

Member Function

geometry::set_bitangent()
Sets the bitangent value for the current vertex.

Declaration

void set_bitangent(float3 value) thread

Parameters
value

A vertex bitangent vector.

Overview
If your geometry modifier offsets vertices in a way that changes the shape of your entity, you
may need to recalculate the bitangent to ensure that later calculations in the fragment shader
and surface shader are using correct values.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 95 133

Member Function

geometry::uv0()
Returns the primary UV texture coordinates of the current vertex.

Declaration

float2 uv0() const thread

Overview
This function returns the UV texture coordinates for the current vertex from the entity's primary
texture coordinates.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 96 133

Member Function

geometry::set_uv0()
Sets the primary UV texture coordinates for the current vertex.

Declaration

void set_uv0(float2 value) thread

Parameters
value

The new UV coordinates.

Overview
Changes made by calling this function are transient and aren’t applied to the entity in your
RealityKit scene.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 97 133

Member Function

geometry::uv1()
Returns the secondary UV texture coordinates of the current vertex.

Declaration

float2 uv1() const thread

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 98 133

Member Function

geometry::set_uv1()
Sets the secondary UV texture coordinates for the current vertex.

Declaration

void set_uv1(float2 value) thread

Use this function to change the secondary UV mapping for the current entity. Changes made by
calling this function are transient and aren’t applied to the entity in your RealityKit scene.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 99 133

Shared APIs

Surface shaders and geometry modifiers use distinct APIs with unique namespaces. There are
some APIs, however, that are available to both surface shaders and geometry modifiers. These
shared APIs include functions for retrieving textures specified on the custom material, like
baseColor.texture and roughness.texture, as well as methods for retrieving non-
texture properties from the material, such as baseColor.tint.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 100 133

https://developer.apple.com/documentation/realitykit/custommaterial/basecolor/3803022-texture
https://developer.apple.com/documentation/realitykit/custommaterial/roughness/3803072-texture
https://developer.apple.com/documentation/realitykit/custommaterial/basecolor/3864271-tint

Struct

textures
An object the framework uses to pass textures from the custom material to a
shader function.

Namespace

realitykit::texture

Declaration

struct textures

Overview
This object provides access to all of the material’s textures from a shader function’s
CustomMaterial, regardless of the material’s lighting modes, even if the modes don’t
support the corresponding output. For example, you can use the clearcoat texture as an
input even if your material uses the .unlit lighting model, which doesn’t support clearcoat
rendering.
Both base_color() and emissive_color() support sRGB textures and use an embedded
color-space profile if the original image file includes one. All other functions return raw values
from the original image and ignore color-space information.
Because shader functions fire once for each vertex or fragment, your shader function needs to
sample textures to to get the correct value for the current vertex or fragment. To do that, declare
a sampler object that specifies how you wish to sample the texture, including how it’s resized if
needed and how UV texture coordinates outside of the normal range are handled. Here’s an
example sampler declaration:

constexpr sampler textureSampler(coord::normalized,
 address::repeat,
 filter::linear,
 mip_filter::linear);

You can use the same sampler multiple times on multiple textures, so if you wish to sample two
textures the same way, use the same sampler for both. For RealityKit custom shader functions,
you must declare no more than eight samplers.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 101 133

For more information on samplers, see the Metal Shading Language Specification.
To use a sampler, call the sample() function on a returned texture object, supplying the
sampler you declared earlier and the UV coordinate value for the current vertex or fragment, as
the following code demonstrates:

 float2 uv = params.geometry().uv0();
 uv.y = 1.0 - uv.y; // Flip the coordinates for loaded models.
 auto tex = params.textures();
 half3 color = (half3)tex.base_color()
 .sample(textureSampler, uv).rgb;

Member Functions
metal::texture2d<half> base_color() const thread

Returns the base color texture from the custom material.
metal::texture2d<half> emissive_color() const thread

Returns the emissive color texture from the custom material.
metal::texture2d<half> normal() const thread

Returns the normal map texture from the custom material.
metal::texture2d<half> roughness() const thread

Returns the roughness texture from the custom material.
metal::texture2d<half> metallic() const thread

Returns the metallic texture from the custom material.
metal::texture2d<half> ambient_occlusion() const thread

Returns the ambient occlusion texture from the custom material.
metal::texture2d<half> specular() const thread

Returns the specular texture from the custom material.
metal::texture2d<half> opacity() const thread

Returns the opacity texture from the custom material.
metal::texture2d<half> clearcoat() const thread

Returns the clearcoat texture from the custom material.
metal::texture2d<half> clearcoat_roughness() const thread

Returns the clearcoat roughness texture from the custom material.
metal::texture2d<half> custom() const thread

Returns the texture from the custom property of the custom material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 102 133

https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf#page=37

Member Function

textures::base_color()
Returns the base color texture from the custom material.

Declaration

metal::texture2d<half> base_color() const thread

Overview
This function returns the texture from the baseColor property of the shader’s material. The
base color texture supports sRGB images and applies the embedded color-space adjustment to
the texture before sending it to the GPU. As a result, the sampled value from this texture is
already adjusted for the rendering device based on the color-space information in the original
file.
Although this property primarily exists so shader functions can calculate the value to pass to
set_base_color(), what you actually use it for in your shader functions is completely up to
you. If, for example, you don’t need a base color for your entity, but you need two textures to
define the entity’s emissive color, you can use base color to submit the second texture that you
need to calculate the value to pass to set_base_color().

Note: Although you can use the base_color() texture for any purpose, avoid using it
as a non-color input because the sampled values may be significantly different
than the raw value in your image file.

To replicate the behavior of PhysicallyBasedMaterial in your surface shader, retrieve the
base color tint and sample the base color texture, then multiply them together, as the
following Metal code demonstrates:

 // Retrieve the base color tint from the CustomMaterial.
 half3 baseColorTint = (half3)params.material_constants()
 .base_color_tint();

 // Retrieve the primary texture coordinates.
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded
 // from a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 auto tex = params.textures();
 half3 color = (half3)tex.base_color()

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 103 133

 .sample(textureSampler, uv).rgb;

 // Multiply the tint and the sampled value from the texture,
 // and assign the result to the shader's base color property.
 color *= baseColorTint;
 params.surface().set_base_color(color);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 104 133

Member Function

textures::emissive_color()
Returns the emissive color texture from the custom material.

Declaration

metal::texture2d<half> emissive_color() const thread

Overview
This function returns the texture from the emissiveColor property of the shader’s material.
The base color texture supports sRGB images and applies the embedded color-space
adjustment to the texture before sending it to the GPU. As a result, the sampled value from this
texture is already adjusted for the rendering device based on the color-space information in the
original file.
Although this property primarily exists so shader functions can calculate the value to pass to
set_base_color(), what you actually use it for in your shader functions is completely up to
you. If, for example, you don’t need a base color for your entity, but you need two textures to
define the entity’s emissive color, you can use base color to submit the second texture that you
need to calculate the value to pass to set_base_color().

Note: Although you can use the emissive_color() texture for any purpose, avoid
using it as a non-color input because the sampled values may be significantly
different than the raw value in your image file.

To replicate the behavior of PhysicallyBasedMaterial in your surface shader, retrieve
both the emissive color tint and sample the emissive color texture, then multiply them
together, as the following code demonstrates:

 // Retrieve the emissive color tint from the CustomMaterial.
 half3 emissiveColorTint = (half3)params.material_constants()
 .emissive_color_tint();

 // Retrieve the primary texture coordinates.
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded from
 // a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 auto tex = params.textures();
 half3 color = (half3)tex.emissive_color()

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 105 133

 .sample(textureSampler, uv).rgb;

 // Multiply the tint and the sampled value from the texture,
 // and assign the result to the shader's emissive color
 // property.
 color *= emissiveColorTint;
 params.surface().set_emissive_color(color);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 106 133

Member Function

textures::normal()
Returns the normal map texture from the custom material.

Declaration

metal::texture2d<half> normal() const thread

Overview
This function provides access to the texture from the normal property of the shader’s
custom material. This property’s primary purpose is to enable shader functions to calculate the
value to pass to set_normal(), but you can use it to calculate other values if your entity
doesn’t use a normal map. Sampled texture values are between 0.0 and 1.0.
When sampling any texture property as a normal map, convert the value sampled from the
texture before passing it to surface_properties.set_normal(), which expects the R
and G values to be between -1.0 and 1.0. and the B value to be between 0.0 and 1.0 The
range of the blue is different because it represents the z-axis of the normal vector. A value of
less than 0.0 indicates a vector that points away from the camera, which has no impact on
lighting calculations.
The following code demonstrates how to use a standard tangent-space normal map to set the
normal in a surface shader:

 // Retrieve the primary texture coordinates.
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded from
 // a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 // Sample the value from the normal map.
 auto tex = params.textures();
 half3 color = (half3)tex.normal()
 .sample(textureSampler, uv).rgb;

 // Convert the sample value to a surface normal vector.
 float3 normal = (float3)unpack_normal(color);
 params.surface().set_normal(normal);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 107 133

Member Function

textures::roughness()
Returns the roughness texture from the custom material.

Declaration

metal::texture2d<half> roughness() const thread

Overview
This function returns the texture from the roughness property of the shader’s material. The
roughness texture doesn’t support sRGB images and discards color-space data embedded in
the source image.
This property’s primary purpose is to enable shader functions to calculate the value to pass to
set_roughness(), but what you actually use it for in your shader function is completely up to
you. If, for example, you don’t need a roughness map for your entity, but you need two textures
to define another non-color attribute, like ambient occlusion, you can use roughness to
submit the second texture.
To replicate the behavior of PhysicallyBasedMaterial in your surface shader, retrieve
both the roughness scale and sample the roughness texture, then multiply them together,
as the following code demonstrates:

 // Retrieve the emissive color tint from the CustomMaterial.
 float roughnessScale = (half3)params.material_constants()
 .roughness_scale();

 // Retrieve the primary texture coordinates
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded from
 // a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 auto tex = params.textures();
 half roughness = (half3)tex.roughness()
 .sample(textureSampler, uv).r;

 // Multiply the scale and the sampled value from the texture,
 // and assign the result to the shader's roughness property.
 roughness *= roughnessScale;
 params.surface().set_roughness(roughness);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 108 133

Member Function

textures::metallic()
Returns the metallic texture from the custom material.

Declaration

metal::texture2d<half> metallic() const thread

Overview
This function returns the texture from the metallic property of the shader’s material. The
metallic texture doesn’t support sRGB images and discards color-space data embedded in the
source image.
This property’s primary purpose is to enable shader functions to calculate the value to pass to
set_metallic(), but what you actually use it for in your shader function is completely up to
you. If, for example, you don’t need a metallic map for your entity, but you need two textures to
define another non-color attribute, like roughness, you can use the metallic property to
submit the second texture.
To replicate the behavior of PhysicallyBasedMaterial in your surface shader, retrieve
both the metallic scale and sample the metallic texture, then multiply them together, as the
following code demonstrates:

 // Retrieve the emissive color tint from the CustomMaterial.
 float metallicScale = (half3)params.material_constants()
 .metallic_scale();

 // Retrieve the primary texture coordinates.
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded
 // from a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 auto tex = params.textures();
 half color = (half3)tex.metallic()
 .sample(textureSampler, uv).r;

 // Multiply the scale and the sampled value from the texture,
 // and assign the result to the shader's base color property.
 color *= metallicScale;
 params.surface().set_metallic(color);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 109 133

Member Function

textures::ambient_occlusion()
Returns the ambient occlusion texture from the custom material.

Declaration

metal::texture2d<half> ambient_occlusion() const thread

Overview
This function returns the texture from the ambientOcclusion property of the shader’s
material. The ambient occlusion texture doesn’t support sRGB images and discards color-space
data embedded in the source image.
This property’s primary purpose is to enable shader functions to calculate the value to pass to
set_ambient_occlusion(), but what you actually use it for in your shader function is
completely up to you. If, for example, you don’t need an ambient occlusion map for your entity,
but you need two textures to define another non-color attribute, like roughness, you can use the
ambientOcclusion property on CustomMaterial to submit the second texture.
To replicate the behavior of PhysicallyBasedMaterial in your surface shader, sample the
ambient occlusion texture, and pass it to set_ambient_occlusion(), as the following
code demonstrates:

 // Retrieve the primary texture coordinates.
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded
 // from a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 auto tex = params.textures();
 half ao = tex.ambient_occlusion()
 .sample(textureSampler, uv).r;

 params.surface().set_ambient_occlusion(ao);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 110 133

Member Function

textures::specular
Returns the specular texture from the custom material.

Declaration

metal::texture2d<half> specular() const thread

Overview
This function returns the texture from the specular property of the shader’s material. The
specular texture doesn’t support sRGB images and discards color-space data embedded in the
source image.
This property’s primary purpose is to enable shader functions to calculate the value to pass to
set_specular(), but what you actually use it for in your shader function is completely up to
you. If, for example, you don’t need a metallic map for your entity, but you need two textures to
define another non-color attribute, like roughness, you can use the specular property to
submit the second texture.
To replicate the behavior of PhysicallyBasedMaterial in your surface shader, retrieve
both the specular scale and sample the specular texture, then multiply them together, as
the following code demonstrates:

 // Retrieve the emissive color tint from the CustomMaterial.
 float specularScale = (half3)params.material_constants()
 .specular_scale();

 // Retrieve the primary texture coordinates.
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded
 // from a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 auto tex = params.textures();
 half specular = (half3)tex.specular()
 .sample(textureSampler, uv).r;

 // Multiply the scale and the sampled value from the texture,
 // and assign the result to the shader's specular property.
 specular *= specularScale;
 params.surface().set_specular(specular);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 111 133

Member Function

textures::opacity
Returns the opacity texture from the custom material.

Declaration

metal::texture2d<half> opacity() const thread

Overview
This function returns the texture from the opacity property of the shader’s custom material.
The opacity texture doesn’t support sRGB images and discards color-space data embedded in
the source image.
This property’s primary purpose is to enable shader functions to calculate the value to pass to
set_opacity(), but what you actually use it for in your shader function is completely up to
you. If, for example, you don’t need an opacity map for your entity, but you need two textures to
define another attribute, you can use the opacity property to submit the second texture.
To replicate the behavior of PhysicallyBasedMaterial in your surface shader, retrieve
both the opacity scale and the opacityThreshold from the material and sample the
opacity texture. If the opacityThreshold is greater than 0.0, compare the sampled value
to the threshold and set opacity to either 1.0, if the value is greater than the threshold, or 0.0
otherwise. If the opacityThreshold is equal to 0.0, multiply the opacity scale and the
sampled value together to get the final opacity value. The following code demonstrates:

 // Retrieve the primary texture coordinates.
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded
 // from a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 // Retrieve the opacity scale from the CustomMaterial.
 float opacityScale = params.material_constants()
 .opacity_scale();
 float opacityThreshold = params.material_constants()
 .opacity_threshold();

 // Sample the opacity texture.
 auto tex = params.textures();
 half opacity = tex.opacity().sample(textureSampler, uv).r;

 if (opacityThreshold > 0.0) {
 // If the opacity threshold is greater than 0, use masking

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 112 133

 // behavior and set the opacity to either 1.0 or 0.0
 // depending on the value of the opacity threshold. The
 // opacity scale is ignored when using a mask.
 opacity = (opacity <= opacityThreshold) ? 0.0 : 1.0;
 } else {
 // If the opacity threshold is 0, then multiply the opacity
 // by the scale.
 opacity *= opacityScale;
 }
 params.surface().set_opacity(opacity);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 113 133

Member Function

textures::clearcoat()
Returns the clearcoat texture from the custom material.

Declaration

metal::texture2d<half> clearcoat() const thread

Overview
This function returns the texture from the clearcoat property of the shader’s material. The
clearcoat texture doesn’t support sRGB images and discards color-space data embedded in the
source texture.
This property’s primary purpose is to enable shader functions to calculate the value to pass to
set_clearcoat(), but what you actually use it for in your shader function is completely up to
you. If, for example, you don’t need a clearcoat map for your entity, but you need two textures to
define another non-color attribute, like roughness, you can use the specular property to
submit the second texture.
To replicate the behavior of PhysicallyBasedMaterial in your surface shader, retrieve
both the clearcoat scale and sample the clearcoat texture, then multiply them together, as
the following code demonstrates:

 // Retrieve the emissive color tint from the CustomMaterial.
 float clearcoatScale = (half3)params.material_constants()
 .specular_scale();

 // Retrieve the primary texture coordinates.
 float2 uv = params.geometry().uv0();

 // Flip the UV coordinate’s y-axis for models loaded
 // from a USDZ or .reality file.
 uv.y = 1.0 - uv.y;

 auto tex = params.textures();
 half clearcoat = (half3)tex.clearcoat()
 .sample(textureSampler, uv).r;

 // Multiply the scale and the sampled value from the texture
 // and assign the result to the shader's clearcoat property.
 clearcoat *= clearcoatScale;
 params.surface().set_clearcoat(clearcoat);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 114 133

Note: The code below doesn’t take clearcoat roughness into account. For a code
sample that replicates the full behavior of PhysicallyBasedMaterial using
both clearcoat and clearcoat roughness, see
textures::clearcoat_roughness().

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 115 133

Member Function

textures::clearcoat_roughness()
Returns the clearcoat roughness texture from the custom material.

Declaration

metal::texture2d<half> clearcoat_roughness() const thread

Overview
This function returns the texture from the clearcoatRoughness property of the shader’s
custom material. The clearcoat roughness texture doesn’t support sRGB images and discards
color-space data embedded in the source texture.
This property’s primary purpose is to enable shader functions to calculate the value to pass to
set_clearcoat_roughness(), but what you actually use it for in your shader function is
completely up to you. If, for example, you don’t need a clearcoat roughness map for your entity,
but you need two textures to define another non-color attribute, like roughness, you can use the
clearcoatRoughness property to submit the second texture.

Note: Calling set_clearcoat_roughness() does nothing unless the custom
material’s lighting model is .clearcoat.

To replicate the behavior of PhysicallyBasedMaterial in your surface shader, retrieve the
clearcoat roughness scale and sample the clearcoat roughness texture, then multiply them
together. You must also retrieve the clearcoat scale and roughness because clearcoat
roughness has no affect unless you also set clearcoat to a value greater than 0.0.
The following code simulates the clearcoat and clearcoat roughness behavior of
PhysicallyBasedMaterial.

 // Retrieve the base color tint from the CustomMaterial.
 float clearcoatScale = params.material_constants()
 .clearcoat_scale();
 float clearcoatRoughnessScale = params.material_constants()
 .clearcoat_roughness_scale();

 // Retrieve the UV texture coordinates for this fragment.
 float2 uv = params.geometry().uv0();

 // Invert the y-axis for models loaded from USDZ or
 // .reality files.
 uv.y = 1.0 - uv.y;

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 116 133

 // Sample the clearcoat texture to get this fragment's value.
 auto tex = params.textures();
 half clearcoat = tex.clearcoat().sample(textureSampler, uv).r;

 // Sample the clearcoat roughness texture to get this fragment's
 // value.
 half clearcoatRoughess = tex.clearcoat_roughness()
 .sample(textureSampler, uv).r;

 // Multiply the scales by the sampled values.
 clearcoat *= clearcoatScale;
 clearcoatRoughess *= clearcoatRoughnessScale;

 // Use the the results as the values for rendering.
 params.surface().set_clearcoat(clearcoat);
 params.surface().set_clearcoat_roughness(clearcoatRoughess);

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 117 133

Member Function

textures::custom()
Returns the texture from the custom property of the custom material.

Declaration

metal::texture2d<half> custom() const thread

Overview
On CustomMaterial, the custom property allows you to pass a custom texture and custom
vector into your shader functions. This function returns the texture from the custom property of
the material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 118 133

Struct

material_parameters
An object the frameworks uses to pass uniform values for the current entity to
shader functions.

Namespace

realitykit::material

Declaration

struct material_parameters

Overview
This object provides access to non-texture properties from the shader function's material. You
can retrieve any material property that contains a tint or scale value by calling
params.material_constants().

Member Functions
float3 base_color_tint() const thread

Returns the tint value from the material’s base color property.
float roughness_scale() const thread

Returns the scale value from the material’s roughness property.
float metallic_scale() const thread

Returns the scale value from the material's metallic property.
float opacity_scale() const thread

Returns the scale value from the material’s blending property.
float opacity_threshold() const thread

Returns the opacity threshold value from the material.
float3 emissive_color() const thread

Returns the color value from the material’s emissive color property.
float specular_scale() const thread

Returns the scale value from the material’s specular property.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 119 133

float clearcoat_scale() const thread
Returns the scale value from the material’s clearcoat property.

float clearcoat_roughness_scale() const thread
Returns the scale value from the material’s clearcoat roughness property.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 120 133

Member Function

material_parameters::base_color_tint()
Returns the tint value from the material’s base color property.

Declaration

float3 base_color_tint() const thread

This function returns the tint value from the material’s baseColor property and
returns(1.0, 1.0, 1.0) if you don't set a base color tint on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 121 133

Member Function

material_parameters::roughness_scale()
Returns the scale value from the material’s roughness property.

Declaration

float roughness_scale() const thread

This function returns the scale value from the material’s roughness property and returns
1.0 if you don't set a roughness scale on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 122 133

Member Function

material_parameters::metallic_scale()
Returns the scale value from the material’s roughness property.

Declaration

float metallic_scale() const thread

This function returns the scale value from the material’s metallic property and returns 1.0
if you don't set a metallic scale on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 123 133

Member Function

material_parameters::opacity_scale()
Returns the scale value from the material’s blending property.

Declaration

float opacity_scale() const thread

This function returns the scale value from the material’s opacity property and returns 1.0 if
you don't set an opacity scale on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 124 133

Member Function

material_parameters::opacity_threshold()
Returns the opacity threshold value from the material.

Declaration

float opacity_threshold() const thread

This function returns the opacityThreshold value from the material and returns 0.0 if you
don't set an opacity threshold on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 125 133

Member Function

material_parameters::emissive_color()
Returns the color value from the material’s emissive color property.

Declaration

float3 emissive_color() const thread

This function returns the tint value from the material’s emissiveColor property and returns
(1.0, 1.0, 1.0) if you don't set an emissive color tint on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 126 133

Member Function

material_parameters::specular_scale()
Returns the scale value from the material’s specular property.

Declaration

float specular_scale() const thread

This function returns the scale value from the material’s specular property and returns 1.0
if you don't set a specular scale on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 127 133

Member Function

material_parameters::clearcoat_scale()
Returns the scale value from the material’s clearcoat property.

Declaration

float clearcoat_scale() const thread

This function returns the scale value from the material’s clearcoat property and returns
1.0 if you don't set a metallic scale on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 128 133

Member Function

material_parameters::clearcoat_roughness_scale()
Returns the scale value from the material’s clearcoat roughness property.

Declaration

float clearcoat_roughness_scale() const thread

This function returns the scale value from the material’s clearcoatRoughness property
and returns 1.0 if you don't set a metallic scale on your material.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 129 133

Utility Functions

The RealityKit Metal APIs include a number of utility functions that aren’t contained by a struct
or class, but provide useful functionality for writing shader functions, such as converting a
sampled normal map value into a normal vector.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 130 133

unpack_normal()
Unpacks a tangent-space normal value from a three-channel normal map value.

Namespace

realitykit

Declaration

half3 unpack_normal(half3 packed_normal)

Parameters
packed_normal

An RGB value sampled from a normal map texture.

Return Value
The unpacked surface normal vector.

Overview
Typical normal maps store surface normal vectors in an image texture using the R, G, and B
channels to store the X, Y, and Z values from the normal vector. Because the X, Y, and Z values
of a surface normal vector are between -1.0 and 1.0 but sampled textures return a value
between 0.0 and 1.0, you need to convert the sampled value from the normal map texture
before passing it to surface_properties.set_normal(). This function performs that
conversion.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 131 133

Function

unpack_normal()
Unpacks a tangent-space normal value from a two-channel normal map.

Namespace

realitykit

Declaration

half3 unpack_normal(half2 packed_normal)

Parameters
packed_normal

A two-component value sampled from a normal map texture.

Return Value
The unpacked and reconstituted surface normal vector.

Overview
Some normal maps store surface normal vectors in an image texture using only the R and G
channels to store the X and Y values from the normal vector. Because it’s possible to calculate
the vector’s Z-value from the X and Y values, a two-channel normal map takes up less memory
and can be stored in a smaller image file.
Because the X, Y, and Z values of a surface normal vector are between -1.0 and 1.0 but
sampled textures return a value between 0.0 and 1.0, you need to convert the sampled value
from the normal map texture before passing it to surface_properties.set_normal().
When using a two-channel normal map, you also need to reconstitute the Z value. This function
handles both of these tasks.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 132 133

unpack_normal()
Unpacks a tangent-space normal value from a three-channel normal map value
with a specified intensity.

Namespace

realitykit

Declaration

half3 unpack_normal(half3 packed_normal, half intensity)

Parameters
packed_normal

An RGB value sampled from a normal map texture.
intensity

The intensity at which to apply the surface details contained in the normal map.

Return Value
The unpacked surface normal vector.

Overview
Typical normal maps store surface normal vectors in an image texture using the R, G, and B
channels to store the X, Y, and Z values from the normal vector. Because the X, Y, and Z values
of a surface normal vector are between -1.0 and 1.0 but sampled textures return a value
between 0.0 and 1.0, you convert the sampled value from the normal map texture before
passing it to surface_properties.set_normal(). This function performs that
conversion.
The intensity parameter adjust the intensity of the details contained in the normal map. A
value greater than 1.0 makes surface details from the normal map stand out more, whereas
values less than 1.0 mute those details.

July 8, 2021 | Copyright © 2021 Apple Inc. All Rights Reserved.

Page of 133 133

	Understanding the Relationship Between Application Code and Shader Code
	Rendering Scenes with Vertex Shaders and Fragment Shaders
	Creating Custom Materials with Surface Shaders and Geometry Modifiers
	Receiving Input
	Setting Output Values
	surface_parameters
	An object the framework uses to pass data into a surface shader.

	Namespace
	Declaration
	Overview
	Member Functions
	Retrieves an object the framework uses to pass textures from a custom material to a surface shader.

	Declaration
	Overview
	Retrieves an object the framework uses to pass entity-specific and global constant to shader functions.

	Declaration
	Overview
	Retrieves geometry properties for the current fragment.

	Declaration
	Overview
	An object the framework uses to pass constant, non-texture values from the entity’s material to the surface shader.

	Declaration
	Overview
	Retrieves an object the surface shader uses to specify outputs values.

	Declaration
	Overview
	uniforms
	An object the framework uses to pass constant values into a surface shader.

	Namespace
	Declaration
	Overview
	Member Functions
	Returns the elapsed time in seconds.

	Declaration
	Overview
	Returns the custom vector from the entity’s material.

	Declaration
	Overview
	Returns a matrix that transforms values from model space into world space.

	Declaration
	Overview
	Returns a matrix that transforms values from model space into view space.

	Declaration
	Overview
	Returns a matrix that transforms values from world space into view space.

	Declaration
	Overview
	Returns a matrix that transforms values from view space into projection space.

	Declaration
	Overview
	Returns a matrix that transforms values from projection space into view space.

	Declaration
	Overview
	geometry
	An object that contains per-vertex values for the current fragment.

	Namespace
	Declaration
	Overview
	Member Functions
	Returns the fragment's position in screen space.

	Declaration
	Overview
	Returns the fragment's position in world space.

	Declaration
	Returns the fragment's position in model space.

	Declaration
	Returns the fragment's interpolated vertex color.

	Declaration
	Overview
	Returns the normal of the fragment's geometry.

	Declaration
	Overview
	Returns the tangent of the fragment's geometry.

	Declaration
	Overview
	Returns the bitangent of the fragment's geometry.

	Declaration
	Overview
	Returns the entity’s primary UV texture coordinate for the fragment.

	Declaration
	Returns the entity’s secondary UV texture coordinate for the fragment.

	Declaration
	Returns a user attribute set by the geometry modifier.

	Declaration
	Overview
	Returns a vector that points from this fragment’s position to the viewer.

	Declaration
	surface_properties
	An object the surface shader uses to specify the rendering attributes.

	Namespace
	Declaration
	Member Functions
	Returns the base color of the fragment.

	Declaration
	Set the base color for the fragment.

	Declaration
	Parameters
	Overview
	Returns the emissive color scale of the fragment.

	Declaration
	Overview
	Sets the emissive color for the fragment.

	Declaration
	Parameters
	Overview
	Returns the tangent-space normal of the current fragment.

	Declaration
	Sets the tangent-space normal for the current fragment.

	Declaration
	Parameters
	Overview
	Returns the roughness value of the fragment.

	Declaration
	Set the roughness value for the fragment.

	Declaration
	Parameters
	Overview
	Returns the reflectiveness of the fragment.

	Declaration
	Sets the reflectiveness of the fragment.

	Declaration
	Parameters
	Overview
	Returns the ambient occlusion value of the fragment.

	Declaration
	Overview
	Sets the ambient occlusion value for the fragment.

	Declaration
	Parameters
	Overview
	Returns the specular value of the fragment.

	Declaration
	Sets the specular value for the fragment.

	Declaration
	Parameters
	Overview
	Returns the clearcoat value of the fragment.

	Declaration
	Sets the clearcoat value for the fragment.

	Declaration
	Parameters
	Overview
	Returns the clearcoat roughness value of the fragment.

	Declaration
	Set the clearcoat roughness value for this fragment.

	Declaration
	Parameters
	Overview
	Returns the opacity value of the fragment.

	Declaration
	Sets the opacity value for the fragment.

	Declaration
	Parameters
	Overview
	geometry_parameters
	An object the framework uses to pass data into a geometry modifier function.

	Namespace
	Declaration
	Overview
	Member Functions
	Retrieves an object that holds entity-specific and global constants.

	Declaration
	Overview
	Retrieves a data object that holds textures from the custom material.

	Declaration
	Overview
	Retrieves an object that holds geometry information about the current vertex.

	Declaration
	Overview
	An object that holds entity-specific and global constants.

	Declaration
	Overview
	uniforms
	An object used to pass data into a geometry modifier function.

	Namespace
	Declaration
	Overview
	Member Functions
	Returns the elapsed time in seconds.

	Declaration
	Overview
	Returns the custom vector from the entity’s material.

	Declaration
	Overview
	Returns a matrix that transforms values from model space into world space.

	Declaration
	Overview
	Returns a matrix that transforms values from model space into view space.

	Declaration
	Overview
	Returns a matrix that transforms values from world space into view space.

	Declaration
	Returns a matrix that transforms values from view space into projection space.

	Declaration
	Overview
	Returns a matrix that transforms values from projection space into view space.

	Declaration
	Overview
	geometry
	An object that contains geometry properties for the current vertex.

	Namespace
	Declaration
	Overview
	Member Functions
	Returns the Metal vertex identifier for the current vertex.

	Declaration
	Returns the position of the current vertex in model space.

	Declaration
	Returns the position of the current vertex in world space.

	Declaration
	Returns the offset for the current vertex in model space.

	Declaration
	Overview
	Sets the offset for the current vertex in model space.

	Declaration
	Parameters
	Overview
	Returns the offset for the current vertex in world space.

	Declaration
	Overview
	Sets the offset for the current vertex in world space.

	Declaration
	Parameters
	Overview
	Returns the color of the current vertex.

	Declaration
	Sets the color for the current vertex.

	Declaration
	Parameters
	Returns the normal vector for the current vertex.

	Declaration
	Sets the normal value for the current vertex.

	Declaration
	Parameters
	Overview
	Returns the tangent vector for the current vertex.

	Declaration
	Sets the tangent value for the current vertex.

	Declaration
	Parameters
	Overview
	Returns the bitangent vector for the current vertex.

	Declaration
	Sets the bitangent value for the current vertex.

	Declaration
	Parameters
	Overview
	Returns the primary UV texture coordinates of the current vertex.

	Declaration
	Overview
	Sets the primary UV texture coordinates for the current vertex.

	Declaration
	Parameters
	Overview
	Returns the secondary UV texture coordinates of the current vertex.

	Declaration
	Sets the secondary UV texture coordinates for the current vertex.

	Declaration
	textures
	An object the framework uses to pass textures from the custom material to a shader function.

	Namespace
	Declaration
	Overview
	Member Functions
	Returns the base color texture from the custom material.

	Declaration
	Overview
	Returns the emissive color texture from the custom material.

	Declaration
	Overview
	Returns the normal map texture from the custom material.

	Declaration
	Overview
	Returns the roughness texture from the custom material.

	Declaration
	Overview
	Returns the metallic texture from the custom material.

	Declaration
	Overview
	Returns the ambient occlusion texture from the custom material.

	Declaration
	Overview
	Returns the specular texture from the custom material.

	Declaration
	Overview
	Returns the opacity texture from the custom material.

	Declaration
	Overview
	Returns the clearcoat texture from the custom material.

	Declaration
	Overview
	Returns the clearcoat roughness texture from the custom material.

	Declaration
	Overview
	Returns the texture from the custom property of the custom material.

	Declaration
	Overview
	material_parameters
	An object the frameworks uses to pass uniform values for the current entity to shader functions.

	Namespace
	Declaration
	Overview
	Member Functions
	Returns the tint value from the material’s base color property.

	Declaration
	Returns the scale value from the material’s roughness property.

	Declaration
	Returns the scale value from the material’s roughness property.

	Declaration
	Returns the scale value from the material’s blending property.

	Declaration
	Returns the opacity threshold value from the material.

	Declaration
	Returns the color value from the material’s emissive color property.

	Declaration
	Returns the scale value from the material’s specular property.

	Declaration
	Returns the scale value from the material’s clearcoat property.

	Declaration
	Returns the scale value from the material’s clearcoat roughness property.

	Declaration
	Unpacks a tangent-space normal value from a three-channel normal map value.

	Namespace
	Declaration
	Parameters
	Return Value
	Overview
	Unpacks a tangent-space normal value from a two-channel normal map.

	Namespace
	Declaration
	Parameters
	Return Value
	Overview
	Unpacks a tangent-space normal value from a three-channel normal map value with a specified intensity.

	Namespace
	Declaration
	Parameters
	Return Value
	Overview

