

WebObjects Dynamic Elements

Element Reference

Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

O T H E R R E F E R E N C E D y n a m i c E l e m e n t S p e c i fi c a t i o n s

3

Dynamic Element Specifications

Introduction

Dynamic elements serve as the basic building blocks of WebObjects applications by linking an
application’s scripted or compiled behavior to an HTML page. The linkage can be two-way, in
that a dynamic element:

�

Initially sets its attributes to values specified by scripted or compiled variables or methods.

�

Represents itself as HTML when called upon to do so.

�

Synchronizes the values of its attributes to those entered by the user, and passes these values
back to your script or compiled code.

With WebObjects, most pages sent to the user’s browser are composed of HTML from a static
template combined with HTML that’s dynamically generated by dynamic elements embedded
(directly, or in the case of reusable components, indirectly) in that template.

Here are the dynamic elements defined in the WebObjects Framework:

WOActionURL
WOActiveImage
WOApplet
WOBody
WOBrowser
WOCheckBox
WOCheckBoxList
WOComponentContent
WOConditional
WOEmbeddedObject
WOFileUpload
WOForm
WOFrame

4

O T H E R R E F E R E N C E D y n a m i c E l e m e n t S p e c i fi c a t i o n s

WOGenericContainer
WOGenericElement
WOHiddenField
WOHyperlink
WOImage
WOImageButton
WOJavaScript
WONestedList
WOParam
WOPasswordField
WOPopUpButton
WOQuickTime
WORadioButton
WORadioButtonList
WORepetition
WOResetButton
WOResourceURL
WOString
WOSubmitButton
WOSwitchComponent
WOText
WOTextField
WOVBScript

See the

WebObjects Developer’s Guide

 for a more complete introduction to Dynamic Elements.

How to Use These Specifications

Each dynamic element specification that follows is divided into three sections: a synopsis, a
description, and a set of bindings. The synopsis is designed to give you ready reference to the
element’s attributes, showing which ones are mandatory and which ones optional. The
description explains the purpose of the element. Finally, the bindings describe in detail each of
the dynamic element’s attributes.

The element synopses use several conventions that you should be aware of, for example:

O T H E R R E F E R E N C E D y n a m i c E l e m e n t S p e c i fi c a t i o n s

5

WOVBScript { scriptFile=

aPath

 | scriptString=

aString

 | scriptSource=

aURL

;
[hideInComment=

aBoolean

;] ... };

�

Italic

 denotes words that represent something else or that can be varied. For example,

aPath

represents a path to a file—the exact path is your choice.

�

Square brackets ([]) mean that the enclosed attribute or attributes are optional. The name
attribute and its value are optional in the synopsis above.

�

A vertical bar (|) separates options that are mutually exclusive, as in

scriptFile=

aPath

 |
scriptString=

aString

 | scriptSource=

aURL

, where you can specify either a

scriptFile

, a

scriptString

, or a

scriptSource

, but not some combination of the three.

�

Ellipsis (...) represents additional attributes and values that you might add but that aren’t
part of the element’s specification. When a dynamic element is asked to produce its HTML
representation, these additional attributes and values are simply copied into the HTML
stream. The values for these additional attributes can be derived dynamically, just as with the
built-in attributes.

�

The remaining words or characters are to be taken literally (that is, they should be typed as
they appear). For example, the

scriptFile

 and

scriptString

 and other attribute names are to
be take literally in the synopsis above.

The otherTagString Attribute

All dynamic elements include an optional attribute,

otherTagString

, Use this attribute to have
the bound string included directly in an element’s HTML tag. Some HTML elements contain
parameters that are not key-value pairs. If you wish to include one of these parameters in your
element, you can send it using this attribute.

6

O T H E R R E F E R E N C E D y n a m i c E l e m e n t S p e c i fi c a t i o n s

O T H E R R E F E R E N C E W O A c t i o n U R L

7

WOActionURL

Element Description

WOActionURL enables the creation of URLs to invoke methods or specify pages to return. You
can use this element for a variety of purposes, but it is primarily intended to support JavaScript
within a WebObjects application.

Synopsis

WOActionURL { action=

aMethod

 | pageName=

aString

; | directActionName=

anActionName

;
actionClass=

className

; [fragmentIdentifier=

anchorFragment

;] [queryDictionary=

aDict

;
?key=

value

;]... };

Bindings

action
Action method to invoke when the URL is accessed. This method must return a an
object that conforms to the WOActionResults protocol such as WOComponent or
WOResponse.

pageName
The name of a WebObjects page to display when the URL is accessed.

directActionName
The direct action method to invoke when the URL is accessed (minus the "Action"
suffix).

actionClass
The name of the class in which the

directActionName

 can be found. Defaults to
“DirectAction”.

8

O T H E R R E F E R E N C E W O A c t i o n U R L

fragmentIdentifier
Named location to display in the destination page (that is, an anchor in the
destination page).

queryDictionary
NSDictionary with keys/value pairs to be placed into the URL’s query string.

?key
Adds a key/value pair to the specified

queryDictionary

 (or replaces an existing key)
by prefixing the key with a "?". For example:

 ?x = y;

puts the key "x" into the query dictionary with the value of the keypath y.

O T H E R R E F E R E N C E W O A c t i v e I m a g e

9

WOActiveImage

Element Description

A WOActiveImage displays an image within the HTML page. If the WOActiveImage is
disabled, it simply displays its image as a passive element in the page. If enabled, the image is
active; that is, clicking the image generates a request.

WOActiveImages are intended to be used outside of an HTML form. WOActiveImage functions
as a mapped, active image. When the user clicks such a WOActiveImage, the coordinates of the
click are sent back to the server. Depending on where the user clicks, different actions can be
invoked. An image map file associates actions with each of the defined areas of the image. If an
image map file is not specified, the method specified by the action attribute is performed when
the image is clicked, or if the

href

 attribute is specified, the image acts as a hyperlink and takes
you to that destination.

Within an HTML form, a WOActiveImage functions as a graphical submit button. However, it
is better to use a WOImageButton instead of WOActiveImage to create a graphic submit button
or a mapped image within a form.

Synopsis

WOActiveImage {filename=

imageFileName

; [framework =

frameworkBaseName

|"app";] |
src=

aURL

; | value=

aMethod

; action=

aMethod

 | href=

aURL

; | data=

dataObject

;
mimeType=

typeString

; [key=

cacheKey

;] [imageMapFile=

aString

]; [name=

aString

;] [x=

aNumber

;
y=

aNumber

;] [target=

frameName

;] [disabled=

aBoolean

;] ... };

Bindings

filename
Path to the image relative to the WebServerResources directory.

10

O T H E R R E F E R E N C E W O A c t i v e I m a g e

framework
Framework that contains the image file. This attribute is only necessary if the image
file is in a different location from the component. That is, if the component and the
image file are both in the application or if the component and the image file are both
in the same framework, this attribute isn’t necessary. If the image file is in a
framework and the component is in the application, specify the framework’s name
here (minus the .framework extension). If the image file should be in the application
but the component is in a framework, specify the "app" keyword in place of the
framework name.

src
URL containing the image data. Use this attribute for complete URLs; for relative
URLs use

filename

 instead.
value

Image data in the form of a WOElement object. This data can come from a database,
a file, or memory.

action
Method to invoke when this element is clicked. If

imageMapFile

 is specified,

action

 is
only invoked if the click is outside any mapped area. In other words,

action

 defines
the default action of the active image.

href
URL to direct the browser to as a default when the image is clicked and no hot zones
are hit.

data
Specifies an image resource in the form of an NSData; this data can come from a
database, a file, or memory. If you specify resource data, you must specify a MIME
type.

mimeType
A string designating a MIME resource type, such as “image/gif”, to be put in the
content-type header field; this type tells the client what to do with data. If you
provide

data

 but no MIME type, WebObjects will raise.
key

A string that the application uses as a key for caching the data specified in

data

. If
you do not provide a key, the data object must be fetched each time it is needed. For
further information, see the reference documentation for the WOResourceManager
class, (in particular, see the

flushDataCache

 method).
imageMapFile

Name of the image map file.

O T H E R R E F E R E N C E W O A c t i v e I m a g e

11

name
If

name

 is specified then the hit point is specified as

name.x=

value

; name.y=

value

; in the form. This is useful when you need to use
this element to submit a form to an external URL that expects the hit point to
be expressed in a certain format.

x, y
If specified, returns the coordinates of the user’s click within the image.

target
Frame in a frameset that will receive the page returned as a result of the user’s click.

disabled
If disabled evaluates to

true

 (or

YES

), a regular image element (

) is generated
rather than an active image.

The Image Map File

If the

imageMapFile

 is specified, WebObjects searches for the image map file in the application
and, if the image is in a framework, the search continues in the framework where the image
resides. You should put image map files into the Resources suitcase in your Project Builder
project. If your project has localized images, the image map file may also need to be localized. If
you choose to have localized mapped images, you must have a corresponding map file for each
localized image (unless you only have one map file which is not in any locale-specific .lproj
directory).

Each line in the image map file has this format:

shape

action

coordinate-list

shape

Either

rect

,

circle

, or

poly

. For a

rect

 shape, the coordinates x1,y1 specify the
upper-left corner of the hot zone, and x2,y2 specify lower-right corner. For a

circle

shape, the x1,y1 is the origin, and x2,y2 is a point on the circle. For the

poly

 shape,
each coordinate is a vertex: up to 100 vertices are supported.

action

Name of the method to invoke when the image is clicked.

Note:

The image map file must be in the same location as the image. For example, if the image
is in a framework, the image map file must be in that same framework.

12

O T H E R R E F E R E N C E W O A c t i v e I m a g e

coordinate-list

The list of coordinates (x1,y1 x2,y2 ...) as described under

shape, above.
Here are some sample entries in an image map file:

rect home 0,0 135,56
rect buy 135,0 270,56

O T H E R R E F E R E N C E W O A p p l e t

13

WOApplet

Element Description

WOApplet is a dynamic element that generates HTML to specify a Java applet. The applet’s
parameters are passed by one or more WOParam elements.

Synopsis
WOApplet { code=javaClassName; width=aWidth; height=aHeight;
[associationClass=className;] [codeBase=aPath;] [archive=jarFile1[, jarFile2];]
[archiveNames=jarFile1[, jarFile2];] [object=serializedApplet;] [hspace= aSize;]
[vspace=aSize;] [align=aString]... };

Bindings

code
Name of the Java class.

width
Width, in pixels, of the area to allocate for the applet.

height
Height, in pixels, of the area to allocate for the applet.

associationClass
Name of the Java subclass of next.wo.client.Association that aids in
communication between client applet and the server.

codeBase
Directory that contains the applet code. If this attribute is omitted, the applet code is
assumed to be in the same directory as the template HTML file.

14

O T H E R R E F E R E N C E W O A p p l e t

archive
Comma-separated list of URLs for jar archive files containing classes and other
resources that will be preloaded. (Note: Currently, most browsers do not support a
comma-separated list, so only a single archive file may be used.) Use this attribute for
archive files that you have generated outside of a WebObjects application or
framework. The value for this attribute is appended to the archiveNames attribute
value.

archiveNames
Comma-separated list of archive files containing classes and other resources that will
be preloaded. (Note: Currently, most browsers do not support a comma-separated
list, so only a single archive file may be used.) Use this attribute for archive files that
are built as part of a WebObjects application or framework project.

object
File containing serialized representation of the applet.

hspace
Amount of whitespace (in pixels) to the left and right of the applet.

vspace
Amount of whitespace (in pixels) at the top and bottom of the applet.

align
Alignment of the applet. Possible values are top, bottom, left, right, and middle.

O T H E R R E F E R E N C E W O B o d y

15

WOBody

Element Description

WOBody specifies the background image to display for the HTML page. All bindings for this
element are related to the background image.

Synopsis
WOBody {src=aURL | filename= imageFileName; [framework = frameworkBaseName|"app" ;] |
data=dataObject; mimeType=typeString; [key=cacheKey;]... };

Bindings

src
URL containing the image data. Use this attribute for complete URLs; for relative
URLs use filename instead.

filename
Path to the image relative to the WebServerResources directory.

framework
Framework that contains the image file. This attribute is only necessary if the image
file is in a different location from the component. That is, if the component and the
image file are both in the application or if the component and the image file are both
in the same framework, this attribute isn’t necessary. If the image file is in a
framework and the component is in an application, specify the framework’s name
here (minus the .framework extension). If the image file should be in the application
but the component is in a framework, specify the "app" keyword in place of the
framework name.

16

O T H E R R E F E R E N C E W O B o d y

data
Specifies any resource in the form of an NSData object; this data can come from a
database, a file, or memory. If you specify resource data, you must specify a MIME
type.

mimeType
A string designating a MIME resource type, such as “image/gif”; this type tells the
client what to do with data. If you provide data but no MIME type, WebObjects will
raise.

key
A string that functions as a key for caching the data specified in data. If you do not
provide a key, the data object must be fetched each time it is needed. For further
information, see the reference documentation for the WOResourceManager class
(pay particular attention to the flushDataCache method).

O T H E R R E F E R E N C E W O B r o w s e r

17

WOBrowser

Element Description

WOBrowser displays itself as a selection list that displays multiple items at a time. The related
element WOPopUpButton is similar to WOBrowser except that it restricts the display to only one
item at a time.

You should provide the title of an item in displayString rather than in value. If there is no
binding for displayString, the string assigned to value is used for the item.

Synopsis
WOBrowser { list=anArray; item=anItem; [displayString=displayValue; value=optionValue;]
[escapeHTML=aBoolean;] [selections=objectArray; | selectedValues=valueArray;]
[name=fieldName;] [disabled=aBoolean;] [multiple = aBoolean;] [size=anInt;]... };

Bindings

list
Array of objects from which the browser derives its values. For example, colleges
could name the list containing objects that represent individual schools.

item
Identifier for the elements of the list. For example, aCollege could represent an object
in the colleges array.

displayString
Value to display in the selection list; for example, aCollege.name for each college
object in the list.

18

O T H E R R E F E R E N C E W O B r o w s e r

value
For each OPTION tag within the selection, this is the value attribute (that is, <OPTION
value=someValue>). This value can be used as an identifier of an item in the list.

escapeHTML
If escapeHTML evaluates to true (or YES), the string rendered by displayString is
converted so that characters which would be interpreted as HTML control characters
become their escaped equivalent (this is the default). Thus, if a your displayString is
“a bold idea”, the string passed to the client browser would be “a
bold idea”, but it would display in the browser as “a bold</
b> idea”. If escapeHTML evaluates to false (or NO), WebObjects simply passes your
data to the client browser “as is.” In this case, the above example would display in
the client browser as “a bold idea”. If you are certain that your strings have no
characters in them which might be interpretted as HTML control characters, you get
better performance if you set escapeHTML to false (or NO).

selections
Array of objects that the user chose from list. For the college example, selections
would hold college objects.

selectedValues
Array of values that is used with DirectActions to specify which options in a list are
selected.

name
Name that uniquely identifies this element within the form. You can specify a name
or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to true (or YES), this element appears in the page but is not
active. That is, selections won’t contain the user’s selection when the page is
submitted.

multiple
If multiple evaluates to true (or YES), the user can select multiple items from the list.
Otherwise, the user can select only one item from the list. The default is false (or NO).

size
How many items to display at one time. The default is 5. size must be greater than 1.

O T H E R R E F E R E N C E W O C h e c k B o x

19

WOCheckBox

Element Description

A WOCheckBox object displays itself in the HTML page as its namesake, a check box user
interface control. It corresponds to the HTML element <INPUT TYPE="CHECKBOX"...>.

If you want to create a list of check boxes, use WOCheckBoxList instead of this element.

Synopsis
WOCheckBox {value=defaultValue; [selection=selectedValue;] [name=fieldName;]
[disabled=aBoolean;] ... };
WOCheckBox {checked=aBoolean; [name=fieldName;] [disabled=aBoolean;] ... };

Bindings

value
Value of this input element. If not specified, WebObjects provides a default value.

selection
If selection and value are equal when the page is generated, the check box is checked.
When the page is submitted, selection is assigned the value of the check box.

checked
During page generation, if checked evaluates to true (or YES), the check box appears
in the checked state. During request handling, checked reflects the state the user left
the check box in: true (or YES) if checked; false (or NO) if not.

name
Name that uniquely identifies this element within the form. You may specify a name
or let WebObjects automatically assign one at runtime.

20

O T H E R R E F E R E N C E W O C h e c k B o x

disabled
If disabled evaluates to true (or YES), this element appears in the page but is not
active. That is, selection won’t contain the user’s selection when the page is
submitted.

O T H E R R E F E R E N C E W O C h e c k B o x L i s t

21

WOCheckBoxList

Element Description

WOCheckBoxList displays a list of check boxes. The user may select several of the objects in the
list, and this sublist is returned as selections.

You should provide the title of a checkbox in displayString rather than in value. If there is no
binding for displayString, the string assigned to value is used to identify the checkbox.

Synopsis
WOCheckBoxList { list=anObjectList; item=anIteratedObject; displayString=displayedValue;
[value=aValue;] [index=aNumber;] [prefix=prefixString;] [suffix=suffixString;]
[selections=selectedValues;] [name=fieldName;] [disabled=aBoolean;]
[escapeHTML=aBoolean;]... };

Bindings

list
Array of objects that the WOCheckBoxList will iterate through.

item
Current item in the list array. (This attribute’s value is updated with each iteration.)

displayString
String to display beside the check box for the current item.

value
Value for the INPUT tag of the current item (INPUT type=”Checkbox” value=someValue>.
You can use this binding as an additional identifier of the itme.

index
Index of the current iteration of the WOCheckBoxList.

22

O T H E R R E F E R E N C E W O C h e c k B o x L i s t

prefix
An arbitrary HTML string inserted before each value.

suffix
An arbitrary HTML string inserted after each value.

selections
An array of objects that the user chose from the list.

name
Name that uniquely identifies this element within the form. You may specify a name
or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to true (or YES), this element appears in the page but is not
active.

escapeHTML
If escapeHTML evaluates to true (or YES), the string rendered by displayString is
converted so that characters which would be interpreted as HTML control characters
become their escaped equivalent (this is the default). Thus, if a your displayString is
“a bold idea”, the string passed to the client browser would be “a
bold idea”, but it would display in the browser as “a bold</
b> idea”. If escapeHTML evaluates to false (or NO), WebObjects simply passes your
data to the client browser “as is.” In this case, the above example would display in
the client browser as “a bold idea”. If you are certain that your strings have no
characters in them which might be interpretted as HTML control characters, you get
better performance if you set escapeHTML to false (or NO).

O T H E R R E F E R E N C E W O C o m p o n e n t C o n t e n t

23

WOComponentContent

Element Description

WOComponentContent allows you to write nested components as HTML container elements:
elements that can include text and other elements between their opening and closing tags. Using
WOComponentContent you can, for example, write a component that defines the header and
footer for all of your application’s pages.

The WOComponentContent dynamic element doesn’t have any attributes. It’s simply a marker
that specifies where the contents wrapped by the component’s <WEBOBJECT> tag should go.

Synopsis
WOComponentContent { };

Example
To write a component that defines the header and footer for some or all of your application’s
pages, first define a component with HTML similar to the following:

<HTML>
<HEAD>

<TITLE>Cool WebObjects App</TITLE>
</HEAD>
<BODY>
<!-- A banner common to all pages here -->
<!-- Start of content defined by the parent element -->
<WEBOBJECT name=ParentContent></WEBOBJECT>
<!-- End of content defined by the parent element -->

Note: You can only have one WOComponentContent element in a given component.

24

O T H E R R E F E R E N C E W O C o m p o n e n t C o n t e n t

<!-- Put a footer common to all pages here. -->
</BODY>

</HTML>

The <WEBOBJECT> element above is a WOComponentContent element declared like this:

ParentContent : WOComponentContent {};

To use this component, wrap the contents of all of your other components with a <WEBOBJECT>
tag that specifies the component defined above. For example, suppose you named the above
component HeaderFooterPage.wo. You could use it in another component like this:

<!-- HTML for a simple component wrapped with HeaderFooterPage -->
<WEBOBJECT name = templateWrapperElement>

<P>Hello, world!</P>
</WEBOBJECT>

Where templateWrapperElement is declared in the .wod file like this:

templateWrapperElement : HeaderFooterPage {};

At runtime, the contents wrapped by templateWrapperElement are substituted for the
WOComponentContent definition. As a result, the HTML generated for this component would
be:

<HTML>
<HEAD>

<TITLE>Cool WebObjects App</TITLE>
</HEAD>
<BODY>
<!-- A banner common to all pages here -->
<!-- Start of content defined by the parent element -->
<P>Hello, world!</P>
<!-- End of content defined by the parent element -->
<!-- Put a footer common to all pages here. -->
</BODY>

</HTML>

O T H E R R E F E R E N C E W O C o n d i t i o n a l

25

WOConditional

Element Description

A WOConditional object controls whether a portion of the HTML page will be generated, based
on the evaluation of its assigned condition.

Synopsis
WOConditional { condition=aBoolean; [negate=aBoolean;] ... };

Bindings

condition
If condition evaluates to YES or true, and assuming that negate isn’t in effect, the
HTML code controlled by the WOConditional object is emitted; otherwise it is not.

negate
Inverts the sense of the condition. By default, negate is assumed to be false or NO.

Example
The negate attribute lets you use the same test to display mutually exclusive information; for
example:

HTML file:

<HTML>
<WEBOBJECTS NAME="PAYING_CUSTOMER">Thank you for your order!</WEBOBJECTS>
<WEBOBJECTS NAME="WINDOW_SHOPPER">Thanks for visiting!</WEBOBJECTS>
</HTML>

26

O T H E R R E F E R E N C E W O C o n d i t i o n a l

Declarations File:

PAYING_CUSTOMER: WOConditional {condition=payingCustomer;};
WINDOW_SHOPPER: WOConditional {condition=payingCustomer; negate=YES;};

Script File:

- payingCustomer {
if (/* ordered something */) {

return YES;
}
return NO;

}

O T H E R R E F E R E N C E W O E m b e d d e d O b j e c t

27

WOEmbeddedObject

Element Description

A WOEmbeddedObject provides support for Netscape plug-ins. It corresponds to the HTML
element <EMBED SRC = >. If the embedded object’s content comes from outside the WebObjects
application, use the src attribute. If the embedded object’s content is returned by a method
within the WebObjects application, use the filename attribute or the data and mimeType
attributes.

Synopsis
WOEmbeddedObject {value=aMethod; | src=aURL; | filename= imageFileName; [framework =
frameworkBaseName|"app";] | data=dataObject; mimeType=typeString; [key=cacheKey;]... };

Bindings

value
The content for this embedded object in the form of a WOElement object. This data
can come from a database, a file, or memory.

src
URL containing the embedded object. Use this attribute for complete URLs; for
relative URLs use filename instead.

filename
Path to the embedded object relative to the WebServerResources directory.

framework
Framework that contains the embedded object. This attribute is only necessary if the
object is in a different location from the component. That is, if the component and the
embedded object are both in the application or if the component and the embedded
object are both in the same framework, this attribute isn’t necessary. If the embedded

28

O T H E R R E F E R E N C E W O E m b e d d e d O b j e c t

object is in a framework and the component is in an application, specify the
framework’s name here minus the .framework extension. If the embedded object
should be in the application but the component is in a framework, specify the "app"
keyword in place of the framework name.

data
Specifies any resource in the form of an NSData; this data can come from a database,
a file, or memory. If you specify resource data, you must specify a MIME type.

mimeType
A string designating a MIME resource type, such as “image/gif”; this type tells the
client what to do with data. If you provide data but no MIME type, WebObjects will
raise.

key
A string that functions as a key for caching the data specified in data. If you do not
provide a key, the data object is fetched each time it is needed. For further
information, see the reference documentation for WOResourceManager, particularly
that for the flushDataCache method.

O T H E R R E F E R E N C E W O F i l e U p l o a d

29

WOFileUpload

Element Description

A WOFileUpload element displays a form element in which a client browser can specify a file to
be uploaded to the server. It corresponds to the HTML: <INPUT type=file>.

WOFileUpload elements inside of a WOForm require that the WOForm have the attribute’s
encoding type set as follows:

enctype = "multipart/form-data"

For further information on the file upload specification, see RFC1867: http://www.w3.org/RT/
REC-html32.html#rfc1867.

If you want to process a file upload in a direct action, use WORequest’s formValueForKey:
method to get the contents of the file that has been uploaded. This method is declared as follows:

- (id)formValueForKey:(NSString *)aKey

or, in Java,

public java.lang.Object formValueForKey(java.lang.String aKey)

Synopsis
WOFileUpload { filePath=aPath; data=fileData };

30

O T H E R R E F E R E N C E W O F i l e U p l o a d

Bindings

filePath
The full file path and name of the file uploaded is sent by the browser and returned
as a string to the variable or method bound to this attribute.

data
The file that is uploaded will be returned as an NSData object to the variable or
method bound to this attribute.

O T H E R R E F E R E N C E W O F o r m

31

WOForm

Element Description

A WOForm is a container element that generates a fill-in form. It gathers the input from the input
elements it contains and sends it to the server for processing. WOForm corresponds to the
HTML element <FORM ... > ... </FORM>.

Synopsis
WOForm { [action=aMethod; | href=aURL;] [multipleSubmit=aBoolean;] ... };

Bindings

href
URL specifying where the form will be submitted.

action
Action method that’s invoked when the form is submitted. If the form contains a
dynamic element that has its own action (such as a WOSubmitButton or a
WOActiveImage), that action is invoked instead of the WOForm’s.

multipleSubmit
If multipleSubmit evaluates to true (or YES), the form can have more than one
WOSubmitButton, each with its own action. By default, WOForm supports only a
single WOSubmitButton.

Note: Some older browsers support only a single submit button in a form.

32

O T H E R R E F E R E N C E W O F o r m

O T H E R R E F E R E N C E W O F r a m e

33

WOFrame

Element Description

WOFrame represents itself as a dynamically generated Netscape Frame element.

Synopsis
WOFrame { value=aMethod; | src=aURL; | pageName=aString; |
directActionName=anActionName; actionClass=className;... };

Bindings

value
Method that will supply the content for this frame.

src
External source that will supply the content for this frame.

pageName
Name of WebObjects page that will supply the content for this frame.

directActionName
The name of the direct action method (minus the "Action" suffix) that will supply the
content for the frame.

actionClass
The name of the class in which the method designated in directActionName can be
found. Defaults to “DirectAction”.

34

O T H E R R E F E R E N C E W O F r a m e

O T H E R R E F E R E N C E W O G e n e r i c C o n t a i n e r

35

WOGenericContainer

Element Description

WOGenericContainer supports development of reusable components that closely model the
behavior of common HTML elements. For example, along with WOComponentContent, you
can use WOGenericContainer to implement your own hyperlink element as a reusable
component. WOGenericContainer has attributes that support the takeValues... and
invokeAction... phases of the component-action request/response loop.

Synopsis
WOGenericContainer { elementName = aConstantString; [omitTags=aBoolean;]
[elementID=identifier;] [otherTagString=aString;] [formValue=singleValue;]
[formValues=arrayOfValues;] [invokeAction=aMethod;]... };

Bindings

elementName
Name of the HTML tag. This name (for example “TEXTAREA”) will be used to generate
the container’s opening and closing tags (<TEXTAREA>...</TEXTAREA>). elementName
can either be a constant or a variable, such as a key path. You can also set the value
of this attribute to nil or null, which effectively shuts off this element (that is,
WebObjects doesn’t generate HTML tags for this element). Alternatively, you can
use the omitTags attribute to achieve the same effect.

36

O T H E R R E F E R E N C E W O G e n e r i c C o n t a i n e r

omitTags
Specifies whether the element's tags should be displayed. This attribute is useful for
defining an element that conditionally wraps HTML in a container tag. The default
value is false (or NO.) If omitTags is true (or YES), the contents of the tag are rendered
but not the tags themselves. Using omitTags for a container makes the container itself
optional.

elementID
Allows programmatic access to the element's element ID. This is a read-only
attribute.

otherTagString
Enables any string to be part of the opening tag. This permits standalone attributes
such as "checked" or "selected" to be part of a tag.

formValue
formValues

Enables implementation of input-type elements (for example, WOTextField). Bind
these attributes to a variable that can contain the component’s input value. During
the takeValues... phase, if the element ID of the current generic container matches
an element ID of a form value in the request, the form value is pushed into the
component using this attribute. The formValue attribute corresponds to
WORequest’s formValueForKey: while the formValues atribute corresponds to
WORequest’s formValuesForKey: method; in other words, formValue pushes a single
attribute while formValues pushes an array of attributes.

invokeAction
Enables implementation of action elements (for example, WOHyperlink). During
the invokeAction... phase, if the element ID of the current generic container matches
the sender ID of the URL, the method bound to this attribute is evaluated. Just as
with any action method, it must return an object that conforms to the
WOActionResults protocol, such as WOComponent or WOResponse.

O T H E R R E F E R E N C E W O G e n e r i c E l e m e n t

37

WOGenericElement

Element Description

WOGenericElement supports development of reusable components that closely model the
behavior of common HTML elements. For example, you can use WOGenericElement to
implement your own image (IMG) element as a reusable component. WOGenericElement has
attributes that support the takeValues... and invokeAction... phases of the component-action
request/response loop.

Synopsis
WOGenericElement { elementName = aConstantString; [omitTags=aBoolean;]
[elementID=identifier;] [otherTagString=aString;] [formValue=singleValue;]
[formValues=arrayOfValues;] [invokeAction=aMethod;]... };

Bindings

elementName
Name of the HTML tag. This name (for example “HR”) will be used to generate the
element’s tag (<HR>). elementName can either be a constant ora variable, such as a key
path. You can also set the value of this attribute to nil or null, which effectively shuts
off this element (that is, WebObjects doesn’t generate HTML tags for this element).
Alternatively, you can use the omitTags attribute to achieve the same effect.

omitTags
Specifies whether the element's tag should be displayed. The default value is false
(or NO). If omitTags is true (or YES), the entire element is not rendered.

elementID
Allows access to the element's element ID. This is a read-only attribute.

38

O T H E R R E F E R E N C E W O G e n e r i c E l e m e n t

otherTagString
Enables any string to be part of the opening tag. This permits standalone attributes
such as "checked" or "selected" to be part of a tag.

formValue
formValues

Enables implementation of input-type elements (for example, WOTextField). Bind
these attributes to a variable that can contain the component’s input value. During
the takeValues... phase, if the element ID of the current generic element matches an
element ID of a form value in the request, the form value is pushed into the
component using this attribute. The formValue attribute corresponds to
WORequest’s formValueForKey: while the formValues attribute corresponds to
WORequest’s formValuesForKey: method; in other words, formValue pushes a single
attribute while formValues pushes an array of attributes.

invokeAction
Enables implementation of action elements (for example, WOHyperlink). During
the invokeAction... phase, if the element ID of the current generic element matches
the sender ID of the URL, the method bound to this attribute is evaluated. Just as
with any action method, it must return an object that conforms to the
WOActionResults protocol, such as WOComponent or WOResponse.

O T H E R R E F E R E N C E W O H i d d e n F i e l d

39

WOHiddenField

Element Description

A WOHiddenField adds hidden text to the HTML page. It corresponds to the HTML element
<INPUT TYPE="HIDDEN"...>. Hidden fields are sometimes used to store application state data in
the HTML page. In WebObjects, the WOStateStorage element is designed expressly for this
purpose.

Synopsis
WOHiddenField { value=defaultValue; [name=fieldName;] [disabled=aBoolean;] ... };

Bindings

value
Value for the hidden text field.

name
Name that uniquely identifies this element within the form. You may specify a name
or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to true (or YES), the element appears in the page but is not active.

40

O T H E R R E F E R E N C E W O H i d d e n F i e l d

O T H E R R E F E R E N C E W O H y p e r l i n k

41

WOHyperlink

Element Description

WOHyperlink generates a hypertext link in an HTML document.

Synopsis
WOHyperlink { action=aMethod | href=aURL; | pageName=aString; |
directActionName=anActionName; actionClass=className;
[fragmentIdentifier=anchorFragment;] [string=aString;] [target=frameName;]
[disabled=aBoolean;] ... };

Bindings

action
Action method to invoke when this element is activated. The method must return a
WOElement.

href
URL to direct the browser to when the link is clicked.

pageName
Name of WebObjects page to display when the link is clicked.

directActionName
The name of the direct action method (minus the "Action" suffix) to invoke when this
element is activated.

actionClass
The name of the class in which the method designated in directActionName can be
found. Defaults to DirectAction.

42

O T H E R R E F E R E N C E W O H y p e r l i n k

fragmentIdentifier
Named location to display in the destination page.

string
Text displayed to the user as the link. If you include any text between the <WEBOBJECT
...> and </WEBOBJECT> tags for this element, the contents of string is appended to that
text.

target
Frame in a frameset that will receive the page returned as a result of the user’s click.

disabled
If evaluates to true (or YES), the content string is displayed, but the hyperlink is not
active.

O T H E R R E F E R E N C E W O I m a g e

43

WOImage

Element Description

A WOImage displays an image in the HTML. It corresponds to the HTML element <IMG
SRC="URL">.

Synopsis
WOImage { src=aURL; | value=imageData; | filename= imageFileName; [framework =
frameworkBaseName | "app" ;] | data=dataObject; mimeType=typeString; [key=cacheKey;]...
};

Bindings

src
URL containing the image data. Use this attribute for complete URLs; for relative
URLs use filename instead.

value
Image data in the form of a WOElement object. This data can come from a database,
a file, or memory.

filename
Path to the image relative to the WebServerResources directory.

framework
Framework that contains the image file. This attribute is only necessary if the image
file is in a different location from the component. That is, if the component and the
image file are both in the application or if the component and the image file are both
in the same framework, this attribute isn’t necessary. If the image file is in a
framework and the component is in an application, specify the framework’s name

44

O T H E R R E F E R E N C E W O I m a g e

here (minus the .framework extension). If the image file should be in the application
but the component is in a framework, specify the "app" keyword in place of the
framework name.

data
Specifies an image resource in the form of an NSData; this data can come from a
database, a file, or memory. If you specify resource data, you must specify a MIME
type.

mimeType
A string designating a MIME resource type, such as “image/gif”, to be put in the
content-type header; this type tells the client what to do with data. If you provide
data but no MIME type, WebObjects will raise.

key
A string that the application uses as a key for caching the data specified in data. If
you do not provide a key, the data object must be fetched each time it is needed. For
further information, see the reference documentation for the WOResourceManager
class, particularly that for the flushDataCache method.

O T H E R R E F E R E N C E W O I m a g e B u t t o n

45

WOImageButton

Element Description

WOImageButton is a graphical submit button. Clicking the image generates a request and
submits the enclosing form’s values. You often use WOImageButton when you need more than
one submit button within a form.

Synopsis
WOImageButton { filename=anImageName; [framework=aFrameworkName | "app";] | src=aURL; |
value=aMethod; action=aMethod; | data=dataObject; mimeType=typeString; [key=cacheKey;]
[imageMapFile=aString;] [name=aString;] [x=aNumber; y=aNumber;] [disabled=aBoolean;] ...
};

Bindings

filename
Path to the image relative to the WebServerResources directory.

framework
Framework that contains the image file. This attribute is only necessary if the image
file is in a different location from the component. That is, if the component and the
image file are both in the application or if the component and the image file are both
in the same framework, this attribute isn’t necessary. If the image file is in a
framework and the component is in an application, specify the framework’s name
here (minus the .framework extension). If the image file should be in the application
but the component is in a framework, specify the "app" keyword in place of the
framework name.

46

O T H E R R E F E R E N C E W O I m a g e B u t t o n

src
URL containing the image data. Use this attribute for complete URLs; for relative
URLs use filename instead.

value
Image data in the form of a WOElement object. This data can come from a database,
a file, or memory.

action
Action method to invoke when this element is clicked.

data
Specifies an image resource in the form of an NSData; this data can come from a
database, a file, or memory. If you specify resource data, you must specify a MIME
type.

mimeType
A string designating a MIME resource type, such as “image/gif”, to be put in the
content-type header; this type tells the client what to do with data. If you provide
data but no MIME type, WebObjects will raise.

key
A string that the application uses as a key for caching the data specified in data. If
you do not provide a key, the data object must be reloaded each time it is needed. For
further information, see the reference documentation for the WOResourceManager
class, particularly that for the flushDataCache method.

imageMapFile
Name of the image map file. See the WOActiveImage description for more
information.

name
Name that uniquely identifies this element within the form. You may specify a name
or let WebObjects automatically assign one at runtime.

x, y
If specified, returns the coordinates of the user’s click within the image.

disabled
If disabled evaluates to true (or YES), the element generates a static image ()
instead of an active image.

O T H E R R E F E R E N C E W O J a v a S c r i p t

47

WOJavaScript

Element Description

WOJavaScript lets you embed a script written in JavaScript in a dynamically generated page.

Synopsis
WOJavaScript { scriptFile=aPath; | scriptString=aString; | scriptSource=aURL;
[hideInComment=aBoolean;] ... };

Bindings

scriptFile
Path to the file containing the script. The path can be statically specified in the
declaration file or it can be an NSString, an object that responds to a description
message by returning an NSString, or a method that returns an NSString.

scriptString
String containing the script. Typically, scriptString is an NSString object, an object
that responds to a description message by returning an NSString, or a method that
returns an NSString.

scriptSource
URL specifying the location of the script.

hideInComment
If hideInComment evaluates to true (or YES), the script will be enclosed in an HTML
comment (<!-- script //-->). Since scripts can generate errors in some older
browsers that weren’t designed to execute them, you may want to enclose your script
in an HTML comment. Browsers designed to run these scripts will still be able to
execute them despite the surrounding comment tags.

48

O T H E R R E F E R E N C E W O J a v a S c r i p t

O T H E R R E F E R E N C E W O N e s t e d L i s t

49

WONestedList

Element Description

WONestedList recursively displays a hierarchical, ordered (numbered) or unordered (bulleted)
list of hyperlinks. This element is useful when you want to display hierarchical lists. When the
user clicks one of the objects in the list, it is returned in selection and the action method is
invoked.

At any point during iteration of the list, the method specified by the sublist attribute returns the
current list’s sublist (if any), level specifies the current nesting level (where the topmost level is
zero), index gives index of the current item within that nesting level (item returns the actual
item), and isOrdered specifies whether the current sublist should be a numbered list or a bulleted
list.

Synopsis
WONestedList { list=anObjectList; item=anIteratedObject; displayString=displayedValue;
sublist = aSubarray; action=aMethod; selection=selectedValue; [index=aCurrentIndex;]
[level=aCurrentLevel;] [isOrdered=aBoolean;] [prefix=prefixString;]
[suffix=suffixString;] [escapeHTML=aBoolean;]... };

Bindings

list
Hierarchical array of objects that the WONestedList will iterate through.

item
Current item in the list array. (This attribute’s value is updated with each iteration.)

displayString
String to display as a hyperlink for the current item.

50

O T H E R R E F E R E N C E W O N e s t e d L i s t

sublist
Method that returns the sublist of the current item or nil if the current item is a leaf.

action
Action method to invoke when the element is activated. This method must return a
WOElement.

selection
When the page is submitted, selection contains the item that the user clicked.

index
Index of the current iteration of the WONestedList. The index is unique to each
level—that is, it starts at 0 for each sublist.

level
Nesting level of the current iteration of the WONestedList. The topmost level is level
0.

isOrdered
If isOrdered evaluates to true (or YES), the current sublist is rendered as an ordered
list. The default is to render as an unordered list.

prefix
An arbitrary HTML string inserted before each value.

suffix
An arbitrary HTML string inserted after each value.

escapeHTML
If escapeHTML evaluates to true (or YES), the string rendered by displayString is
converted so that characters which would be interpreted as HTML control characters
become their escaped equivalent (this is the default). Thus, if a your displayString is
“a bold idea”, the string passed to the client browser would be “a
bold idea”, but it would display in the browser as “a bold</
b> idea”. If escapeHTML evaluates to false (or NO), WebObjects simply passes your
data to the client browser “as is.” In this case, the above example would display in
the client browser as “a bold idea”. If you are certain that your strings have no
characters in them which might be interpreted as HTML control characters, you get
better performance if you set escapeHTML to false (or NO).

O T H E R R E F E R E N C E W O P a r a m

51

WOParam

Element Description

WOParam elements are used for passing WOApplet parameters.

Synopsis
WOParam { name=aString; value=aString; | action=aMethod; ... };

Bindings

name
Symbolic name associated with this element’s value.

value
Value of this parameter.

action
Method that sets the parameter’s value. Use this attribute instead of value if you want
the parameter to be a WebObjects component.

52

O T H E R R E F E R E N C E W O P a r a m

O T H E R R E F E R E N C E W O P a s s w o r d F i e l d

53

WOPasswordField

Element Description

A WOPasswordField represents itself as a text field that doesn’t echo the characters that a user
enters. It corresponds to the HTML element <INPUT TYPE="PASSWORD"...>.

Synopsis
WOPasswordField { value=defaultValue; [name=fieldName;] [disabled=aBoolean;] ... };

Bindings

value
During page generation, value sets the default value of the text field. This value is not
displayed to the user. During request handling, value holds the value the user
entered into the field, or the default value if the user left the field untouched.

name
This name uniquely identifies this element within the form. You may specify a name
or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to true (or YES), the element appears in the page but is not
active. That is, value does not contain the user’s input when the page is submitted.

54

O T H E R R E F E R E N C E W O P a s s w o r d F i e l d

O T H E R R E F E R E N C E W O P o p U p B u t t o n

55

WOPopUpButton

Element Description

WOPopUpButton, when clicked, displays itself as a selection list that allows the user to select
only one item at a time. The related element WOBrowser is similar to WOPopUpButton except
that it allows the user to select more than one item at a time.

You should provide the title of an item in displayString rather than in value. If there is no
binding for displayString, the string assigned to value is used for the item.

Synopsis
WOPopUpButton { list=anArray; item=anItem; displayString=displayedValue;
[value=optionValue;] [selection=theSelection; | selectedValue=selectedValue;]
[name=fieldName;] [disabled=aBoolean;] [escapeHTML=aBoolean;]
[noSelectionString=aString]... };

Bindings

list
Array of objects from which the WOPopUpButton derives its values.

item
Identifier for the elements of the list. For example, aCollege could represent an object
in a colleges array.

displayString
Value to display in the selection list; for example, aCollege.name for each college
object in the list.

56

O T H E R R E F E R E N C E W O P o p U p B u t t o n

value
For each OPTION tag within the selection, this is the “value” attribute (that is, <OPTION
value=”someValue”>). You can use this binding to specify additional identifiers of
each item in the menu.

selection
Object that the user chose from the selection list. For the college example, selection
would be a college object.

selectedValue
Value that is used with DirectActions to specify which option in the list is selected.

name
Name that uniquely identifies this element within the form. You can specify a name
or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to true (or YES), this element appears in the page but is not
active. That is, selection does not contain the user’s selection when the page is
submitted.

escapeHTML
If escapeHTML evaluates to true (or YES), the string rendered by displayString is
converted so that characters which would be interpreted as HTML control characters
become their escaped equivalent (this is the default). Thus, if a your displayString is
“a bold idea”, the string passed to the client browser would be “a
bold idea”, but it would display in the browser as “a bold</
b> idea”. If escapeHTML evaluates to false (or NO), WebObjects simply passes your
data to the client browser “as is.” In this case, the above example would display in
the client browser as “a bold idea”. If you are certain that your strings have no
characters in them which might be interpreted as HTML control characters, you get
better performance if you set escapeHTML to false (or NO).

noSelectionString
Enables the first item to be “empty.” Bind this attribute to a string (such as an empty
string) that, if chosen, represents an empty selection. When this item is selected, the
selection attribute is set to nil or null.

O T H E R R E F E R E N C E W O Q u i c k T i m e

57

WOQuickTime

Element Description

WOQuickTime is a dynamic element that you can use to incorporate QuickTime objects (movie,
sound, VR, ...) into your WebObjects applications. The WOQuickTime API is essentially based
on the QuickTime plug-ins API.

WOQuickTime supports QuickTime VR with hotspots. If you specify a list of hotspots and the
user clicks inside the QuickTime VR object, the method specified by the action attribute is
performed and the selection attribute is set to the value of the selected hotspot.

You should use WOQuickTime components outside of an HTML form.

Synopsis
WOQuickTime { filename=imageFilePath; | src=aURL; | [framework=frameworkName | ”app”;]
width=anInt; height=anInt; [hidden=aBoolean;] [pluginsPage=aURL;]
[hotspotList=arrayOfIDs; selection=aString; action=aMethod; href=anHREF; |
pageName=page; [target=frameTarget;]] [bgcolor=hexString;] [volume=anInt;]
[pan=panAngle;] [tilt=tiltAngle;] [fov=fieldOfView;] [node=initialNode;]
[correction=NONE|PARTIAL|FULL;] [cache=aBoolean;] [autoplay=aBoolean;]
[playeveryframe=aBoolean;] [controller=aBoolean;] [prefixhost=aBoolean;]

Bindings
WOQuickTime has the following attributes. Those attributes relevant only to VR movies are
indicated with “[VR]” in the description.

filename
Path to the QuickTime object relative to the WebServerResources directory.

58

O T H E R R E F E R E N C E W O Q u i c k T i m e

src
URL locating the QuickTime object. Use this attribute for complete URLs; for relative
URLs use filename instead.

framework
The framework that contains the QuickTime object. This attribute is only necessary
if the QuickTime object is in a different location from the component. That is, if the
component and the QuickTime object are both in the application or if the component
and the QuickTime object are both in the same framework, this attribute isn’t
necessary. If the QuickTime object is in a framework and the component is in the
application, specify the framework’s name here (minus the .framework extension). If
the QuickTime object should be in the application but the component is in a
framework, specify the “app” keyword in place of the framework name.

width
QuickTime object width in pixels. The width attribute is required. Never specify a
width of less than 2 as this can cause problems with some browsers. If you are trying
to hide the movie, use the hidden attribute instead. If you don’t know the width of the
movie, open your movie with MoviePlayer (it comes with QuickTime) and select Get
Info from the Movie menu. If you don’t use the scale attribute and you supply a
width that is smaller than the actual width of the movie, the movie will be cropped
to fit. If you supply a width that is greater than the width of the movie, the movie will
be centered inside this width.

height
Quicktime object height in pixels. If you want to display the movie’s controller, you’ll
need to add 16 pixels to the height. height is required unless you use the hidden
attribute. Never specify a height of less than 2 as this can cause problems with some
browsers. If you are trying to hide the movie, use the hidden attribute instead. If you
don't know the height of the movie, open your movie with MoviePlayer and select
Get Info from the Movie menu. If you do not use the scale attribute and you supply
a height that is smaller than the actual height of the movie (plus 16 if you are showing
the controller), the movie will be cropped to fit. If you supply a height that is greater
than the height of the movie, the movie will be centered inside this height.

pluginsPage
This optional attribute allows you to specify a URL from which the user can fetch the
necessary plug-in if it is not installed. This attribute is handled by your browser. If
your browser cannot find the plug-in when loading your page, it will warn the user
and allow them to bring up the specified URL. Generally this parameter should be
set to “http://www.apple.com/quicktime”. This attribute is appropriate for both
QuickTime movies and QuickTime VR Objects and Panoramas.

O T H E R R E F E R E N C E W O Q u i c k T i m e

59

hotspotList
[VR] The hotspot list is an array of strings, each of which should be mapped to a
hotspot ID as defined when the hotspots are created with the QuickTime VR
authoring tools.

selection
[VR] A string corresponding to the ID of the user-selected hotspot or nil if none is
selected.

action
Method to invoke when the QuickTime object is clicked. The selection parameter
then contains the ID of the selected hotspot if a hotspot list has been specified, or nil
otherwise.

href
An optional attribute for specifying a URL to direct the browser to when the
QuickTime object is clicked and no hotspots are hit.

pageName
An optional attribute specifying the name of the WebObjects page to display when
the QuickTime object is clicked and no hotspots are hit.

bgcolor
Background color for the QuickTime object. This is an optional attribute. Use bgcolor
to specify the background color for any space that is not taken by the movie—as, for
example, if you embed a 160x120 movie in a 200x120 space. Specify the color as a hex
value.

target
(optional) When set, the target attribute is the name of a valid frame (including
_self, _top, _parent, _blank or an explicit frame name) that will be the target of a link
specified by the hotspot or href attribute.

volume
An optional attribute affecting the initial volume level. Possible values are 0 through
100. A setting of 0 effectively mutes the audio; a setting of 100 is maximum volume.

pan
[VR] This optional attribute allows you to specify the initial pan angle for a
QuickTime VR movie.The range of values for a typical movie would be 0.0 to 360.0
degrees. If no value for pan is specified, the value stored in the movie is used.

tilt
[VR] This optional attribute allows you to specify the initial tilt angle for a QuickTime
VR movie. The range of values for a typical movie would be -42.5 to 42.5 degrees. If
no value for tilt is specified, the value stored in the movie is used.

60

O T H E R R E F E R E N C E W O Q u i c k T i m e

fov
[VR] This optional attribute allows you to specify the initial field of view angle for a
QuickTime VR movie.The range of values for a typical movie would be 5.0 to 85.0
degrees. If no value is specified for fov, the value stored in the panoramic movie is
used.

node
[VR] This optional attribute allows you to specify the initial node for a multi-node
QuickTime VR movie. If no value is specified for node , the default node and view
(specified at creation time of the movie) is used.

correction
[VR] (optional) Possible values are “NONE”, “PARTIAL”, or “FULL” (the default). This
attribute is only appropriate for QuickTime VR objects and panoramas.

cache
(optional) If cache evaluates to true (or YES), the browser will cache movies when
possible just like other documents.

autoplay
(optional) When autoplay evaluates to true (or YES), causes the movie to start playing
as soon as the QuickTime Plug-In estimates that it’ll be able to play the entire movie
without waiting for additional data. This attribute’s default is specified by a user
setting in the QuickTime Plug-in Preferences.

hidden
This optional attribute controls the visibility of the movie. By default the value is true
(or YES); if you set it to false (or NO) the movie won’t be visible on the page. This
option is not appropriate for QuickTime VR Objects or Panoramas. You can use
hidden to hide a sound-only movie.

playEveryFrame
When this optional attribute evaluates to true (or YES) the QuickTime plug-in plays
every frame, even if it is necessary to play at a slower rate to do so. This attribute is
particularly useful to play simple animations, and is appropriate for QuickTime
movies. Note that enabling playEveryFrame will turn off any audio tracks your movie
may have.

controller
This optional attribute sets the visibility of the movie controller (with QTVR 2.1, you
can have a controller on VR Panarama or Object Movies). If you don’t specify
controller, the default is true (or YES) for QuickTime movies. For compatibility with
existing web pages, the default is false (or NO) for QuickTime VR movies.

O T H E R R E F E R E N C E W O Q u i c k T i m e

61

prefixHost
This attribute should be used to fix a bug with the QuickTime 2.x plug-in on
Windows platforms. Setting prefixHost to true (or YES) will automatically add the
http host name at the beginning of each dynamic URL, allowing old plug-ins to
correctly handle WOQuickTime component. The default is false (or NO)

62

O T H E R R E F E R E N C E W O Q u i c k T i m e

O T H E R R E F E R E N C E W O R a d i o B u t t o n

63

WORadioButton

Element Description

WORadioButton represents itself as an on-off switch. Radio buttons are normally grouped, since
the most important aspect of their behavior is that they allow the user to select no more than one
of several choices. If the user selects one button, the previously selected button (if any) becomes
deselected.

Since radio buttons normally appear as a group, WORadioButton is commonly found within a
WORepetition. Alternatively, you can use the WORadioButtonList element.

Synopsis
WORadioButton {value=defaultValue; [selection=selectedValue;] [name=fieldName;]
[disabled=aBoolean;] ... };
WORadioButton {checked=aBoolean; [name=fieldName;] [disabled=aBoolean;] ... };

Bindings

value
Value of this input element. If not specified, WebObjects provides a default value.

selection
If selection and value are equal when the page is generated, the radio button is
selected. When the page is submitted, selection is assigned the value of the radio
button.

Note: in a WORadioButton declaration you must supply either checked or value, but not both:
they are mutually exclusive.

64

O T H E R R E F E R E N C E W O R a d i o B u t t o n

checked
During page generation, if checked evaluates to true (or YES), the radio button
appears in the selected state. During request handling, checked reflects the state the
user left the radio button in: true (or YES) if checked; false (or NO) if not.

name
Name that identifies the radio button’s group. Only one radio button at a time can be
selected within a group.

disabled
If disabled evaluates to true (or YES), this element appears in the page but is not
active. That is, selection does not contain the user’s selection when the page is
submitted.

O T H E R R E F E R E N C E W O R a d i o B u t t o n L i s t

65

WORadioButtonList

Element Description

WORadioButtonList displays a list of radio buttons. The user may select one of the objects in the
list, and this object is returned as selection.

Synopsis
WORadioButtonList { list=anObjectList; item=anIteratedObject;
displayString=displayedValue; [value=aValue;] [index=aNumber;] [prefix=prefixString;]
[suffix=suffixString;] [selection=selectedValue;] [name=fieldName;] [disabled=aBoolean;]
[escapeHTML=aBoolean;]... };

Bindings

list
Array of objects that the WORadioButtonList will iterate through.

item
Current item in the list array. (This attribute’s value is updated with each iteration.)

displayString
String to display beside the radio button for the current item.

Note: You should provide the title of a radio button in displayString rather than in value. If
there is no binding for displayString, the string assigned to value is used as the label of the
button.

66

O T H E R R E F E R E N C E W O R a d i o B u t t o n L i s t

value
Value for the INPUT tag of the current item (INPUT type=”RadioButton”
value=”someValue”>.

index
Index of the current iteration of the WORadioButtonList.

prefix
An arbitrary HTML string inserted before each value.

suffix
An arbitrary HTML string inserted after each value.

selection
An object that the user chose from the list.

name
Name that uniquely identifies this element within the form. You may specify a name
or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to true (or YES), this element appears in the page but is not
active.

escapeHTML
If escapeHTML evaluates to true (or YES), the string rendered by displayString is
converted so that characters which would be interpreted as HTML control characters
become their escaped equivalent (this is the default). Thus, if a your displayString is
“a bold idea”, the string passed to the client browser would be “a
bold idea”, but it would display in the browser as “a bold</
b> idea”. If escapeHTML evaluates to false (or NO), WebObjects simply passes your
data to the client browser “as is.” In this case, the above example would display in
the client browser as “a bold idea”. If you are certain that your strings have no
characters in them which might be interpreted as HTML control characters, you get
better performance if you set escapeHTML to false (or NO).

O T H E R R E F E R E N C E W O R e p e t i t i o n

67

WORepetition

Element Description

A WORepetition is a container element that repeats its contents (that is, everything between the
<WEBOBJECT...> and </WEBOBJECT...> tags in the template file) a given number of times. You can
use a WORepetition to create dynamically generated ordered and unordered lists or banks of
check boxes or radio buttons.

Synopsis
WORepetition {list=anObjectList; item=anIteratedObject; [index=aNumber;]
[identifier=aString;] ... };
WORepetition {count=aNumber; [index=aNumber;] ... };

Bindings

list
Array of objects that the WORepetition will iterate through. Ideally, this should be
an immutable array. If you must pass a mutable array, your code must not alter the
array while the WORepetition is iterating through it.

item
Current item in the list array. (This attribute’s value is updated with each iteration.)

index
Index of the current iteration of the WORepetition. (This attribute’s value is updated
with each iteration.

count
Number of times this element will repeat its contents.

68

O T H E R R E F E R E N C E W O R e p e t i t i o n

O T H E R R E F E R E N C E W O R e s e t B u t t o n

69

WOResetButton

Element Description

A WOResetButton element generates a reset button in an HTML page. This element is used
within HTML forms.

Synopsis
WOResetButton { value=aString; ... };

Bindings

value
Title of the button.

70

O T H E R R E F E R E N C E W O R e s e t B u t t o n

O T H E R R E F E R E N C E W O R e s o u r c e U R L

71

WOResourceURL

Element Description

WOResourceURL enables the creation of URLs to return resources, such as images and sounds.
You can use this element for a variety of purposes, but it is primarily intended to support
JavaScript within a WebObjects application.

Synopsis
WOResourceURL { filename= imageFileName; [framework = frameworkBaseName | "app";] |
data=dataObject; mimeType=typeString; [key=cacheKey;]... };

Bindings

filename
Path to the resource relative to the WebServerResources directory.

framework
Framework that contains the resource file. This attribute is only necessary if the file
is in a different location from the component. That is, if the component and the file
are both in the application or if the component and the file are both in the same
framework, this attribute isn’t necessary. If the resource file is in a framework and the
component is in an application, specify the framework’s name here (minus the
.framework extension). If the resource file should be in the application but the
component is in a framework, specify the "app" keyword in place of the framework
name.

data
Specifies any resource in the form of an NSData; this data can come from a database,
a file, or memory. If you specify resource data, you must specify a MIME type.

72

O T H E R R E F E R E N C E W O R e s o u r c e U R L

mimeType
A string designating a MIME resource type, such as “image/gif”; this type tells the
client what to do with data. If you provide data but no MIME type, WebObjects will
raise.

key
A string that functions as a key for caching the data specified in data. If you do not
provide a key, the data object must be fetched each time it is needed. For further
information, see the reference documentation for the WOResourceManager class,
particularly that for the flushDataCache method.

O T H E R R E F E R E N C E W O S t r i n g

73

WOString

Element Description

A WOString represents itself in the HTML page as a dynamically generated string.

Synopsis
WOString { value=aString; [formatter=formatterObj;] [escapeHTML=aBoolean;]
[dateformat=dateFormatString;] [numberformat=numberFormatString;]
[valueWhenEmpty=emptyString... };

Bindings

value
Text to display in the HTML page. value is typically assigned an NSString object, an
object that responds to a description message by returning an NSString, or a method
that returns an NSString. The NSString’s contents are substituted into the HTML in
the place occupied by this dynamic element.

escapeHTML
If escapeHTML evaluates to true (or YES), the string rendered by value is converted so
that characters which would be interpreted as HTML control characters become their
escaped equivalent (this is the default). Thus, if a your value is “a bold idea”,
the string passed to the client browser would be “a bold idea”,
but it would display in the browser as “a bold idea”. If escapeHTML evaluates
to false (or NO), WebObjects simply passes your data to the client browser “as is.” In
this case, the above example would display in the client browser as “a bold idea”. If
you are certain that your strings have no characters in them which might be
interpreted as HTML control characters, you get better performance if you set
escapeHTML to false (or NO).

74

O T H E R R E F E R E N C E W O S t r i n g

formatter
An instance of an NSFormatter subclass to be used to format object values for display
as strings. This attribute should specify a variable containing (or method returning)
a preconfigured formatter object. For instance, a WOString might have the binding:
formatter = application.dateFormatter

With the following code:
// Application.wos
NSFormatter *_dateFormatter;

- (NSFormatter *)dateFormatter {
if (!_dateFormatter) {

_dateFormatter = [[NSDateFormatter alloc]
initWithDateFormat:@"%m/%d/%Y"
allowNaturalLanguage:NO];

}
return _dateFormatter;

}

If a user enters an “unformattable” value, WOString passes the invalid value
through, allowing you to send back an error page that shows the invalid value.

dateformat
A format string that specifies how value should be formatted as a date. If a date
format is used, value can be assigned an NSCalendarDate object (if it is assigned an
NSString object, it is stored as the string representation of an NSCalendarDate
object). If the element’s value can’t be interpreted according to the format you
specify, value is set to nil. See the NSCalendarDate class specification for a
description of the date format syntax.

numberformat
A format string that specifies how value should be formatted as a number. If a
number format is used, value must be assigned an NSNumber object. If the element’s
value can’t be interpreted according to the format you specify, value is set to nil. See
the NSNumberFormatter class specification for a description of the number format
syntax.

valueWhenEmpty
A string that will be substituted for value when value is the empty string.

O T H E R R E F E R E N C E W O S u b m i t B u t t o n

75

WOSubmitButton

Element Description

A WOSubmitButton element generates a submit button in an HTML page. This element is used
within HTML forms.

Synopsis
WOSubmitButton { action=submitForm; value=aString; [disabled=aBoolean;] [name=aName;]
... };

Bindings

action
Action method to invoke when the form is submitted.

value
Title of the button.

disabled
If disabled evaluates to true (or YES), the element appears in the page but is not
active. That is, clicking the button does not actually submit the form.

name
Name that uniquely identifies this element within the form. You may specify a name
or let WebObjects automatically assign one at runtime.

76

O T H E R R E F E R E N C E W O S u b m i t B u t t o n

O T H E R R E F E R E N C E W O S w i t c h C o m p o n e n t

77

WOSwitchComponent

Element Description

WOSwitchComponent provides a way to determine at runtime which nested component should
be displayed. This component is useful when you want to decide how to display information
based on the state of the application.

Synopsis
WOSwitchComponent { WOComponentName=aComponentName; ... };

Bindings

WOComponentName
Name of the component to display. This attribute can be a string or a method that
returns the name of a component.
If the component specified in WOComponentName takes attributes, pass these attributes
along to WOSwitchComponent following the WOComponentName attribute. Note that
this means that all components that can be displayed by this WOSwitchComponent
must use the same API.

78

O T H E R R E F E R E N C E W O S w i t c h C o m p o n e n t

O T H E R R E F E R E N C E W O Te x t

79

WOText

Element Description

WOText generates a multi-line field for text input and display. It corresponds to the HTML
element <TEXTAREA>.

Synopsis
WOText { value=defaultValue; [name=fieldName;] [disabled=aBoolean;] ... };

Bindings

value
During page generation, value specifies the text that is displayed in the text field.
During request handling, value contains the text as the user left it.

name
The name that uniquely identifies this element within the form. You may specify a
name or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to true (or YES), the text area appears in the page but is not
active. That is, value does not contain the user’s input when the page is submitted.

80

O T H E R R E F E R E N C E W O Te x t

O T H E R R E F E R E N C E W O Te x t F i e l d

81

WOTextField

Element Description

A WOTextField represents itself as a text input field. It corresponds to the HTML element <INPUT
TYPE="TEXT"...>.

Synopsis
WOTextField { value=aValue; [formatter=formatterObj;] [dateformat=dateFormatString;]
[numberformat=numberFormatString;] [name=fieldName;] [disabled=aBoolean;] ... };

Bindings

value
During page generation, value sets the default value displayed in the single-line text
field. During request handling, it holds the value the user entered into the field, or
the default value if the user left the field untouched.

formatter
An instance of an NSFormatter subclass to be used to format object values for display
as strings, and format user-entered strings back into object values. This attribute
should specify a variable containing (or method returning) a preconfigured
formatter object. For instance, a WOTextField might have the binding:
formatter = application.dateFormatter

With the following code:
// Application.wos
NSFormatter *_dateFormatter;

- (NSFormatter *)dateFormatter {

82

O T H E R R E F E R E N C E W O Te x t F i e l d

if (!_dateFormatter) {
_dateFormatter = [[NSDateFormatter alloc]

initWithDateFormat:@"%m/%d/%Y"
allowNaturalLanguage:NO];

}
return _dateFormatter;

}

If a user enters an “unformattable” value, WOTextField passes the invalid value
through, allowing you to send back an error page that shows the invalid value.

dateformat
A format string that specifies how value should be formatted as a date. If a date
format is used, value can be assigned an NSCalendarDate object (if it is assigned an
NSString object, it will be stored as the string representation of an NSCalendarDate
object). If the element’s value can’t be interpreted according to the format you
specify, it is set to nil. See the NSCalendarDate class specification for a description
of the date format syntax.

numberformat
A format string that specifies how value should be formatted as a number. If a
number format is used, value must be assigned an NSNumber object. If the element’s
value can’t be interpreted according to the format you specify, value is set to nil. See
the NSNumberFormatter class specification for a description of the number format
syntax.

name
Name that uniquely identifies this element within the form. You may specify a name
or let WebObjects automatically assign one at runtime.

disabled
If disabled evaluates to true (or YES), the element appears in the page but is not
active. That is, value does not contain the user’s input when the page is submitted.

O T H E R R E F E R E N C E W O V B S c r i p t

83

WOVBScript

Element Description

WOVBScript lets you embed a script written in Visual Basic in a dynamically generated page.

Synopsis
WOVBScript { scriptFile=aPath | scriptString=aString | scriptSource=aURL;
[hideInComment=aBoolean;] ... };

Bindings

scriptFile
Path to the file containing the script. The path can be statically specified in the
declaration file or it can be an NSString, an object that responds to a description
message by returning an NSString, or a method that returns an NSString.

scriptString
String containing the script. Typically, scriptString is an NSString object, an object
that responds to a description message by returning an NSString, or a method that
returns an NSString.

scriptSource
URL specifying the location of the script.

hideInComment
If hideInComment evaluates to true (or YES), the script will be enclosed in an HTML
comment (<!-- script -->). Since scripts can generate errors in some older browsers
that weren’t designed to execute them, you may want to enclose your script in an
HTML comment. Browsers designed to run these scripts will still be able to execute
them despite the surrounding comment tags.

84

O T H E R R E F E R E N C E W O V B S c r i p t

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited, and composed on a desktop publishing system
using Apple Macintosh computers and FrameMaker software.

Line art was created using Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Adobe Letter Gothic.

WRITER
Greg Wilson

PRODUCTION EDITOR
Gerri Gray

	Dynamic Element Specifications
	WOActionURL
	WOActiveImage
	WOApplet
	WOBody
	WOBrowser
	WOCheckBox
	WOCheckBoxList
	WOComponentContent
	WOConditional
	WOEmbeddedObject
	WOFileUpload
	WOForm
	WOFrame
	WOGenericContainer
	WOGenericElement
	WOHiddenField
	WOHyperlink
	WOImage
	WOImageButton
	WOJavaScript
	WONestedList
	WOParam
	WOPasswordField
	WOPopUpButton
	WOQuickTime
	WORadioButton
	WORadioButtonList
	WORepetition
	WOResetButton
	WOResourceURL
	WOString
	WOSubmitButton
	WOSwitchComponent
	WOText
	WOTextField
	WOVBScript

