Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Error when using Image Feature Print v2
Hi all, I'm working on an app to classify dog breeds via CoreML, but when I try training a model using Image Feature Print v2, I get the following error: Failed to create CVPixelBufferPool. Width = 0, Height = 0, Format = 0x00000000 Strangely, when I switch back to Image Feature Print v1, the model trains perfectly fine. I've verified that there aren't any invalid or broken images in my dataset. Is there a fix for this? Thanks!
1
1
425
Jan ’25
Create ML app seems to stop testing without error
I have a smallish image classifier I've been working on using the Create ML app. For a while everything was going fine, but lately, as the dataset has gotten larger, Create ML seems to stop during the testing phase with no error or test results. You can see here that there is no score in the result box, even though there are testing started and completed messages: No error message is shown in the Create ML app, but I do see these messages in the log: default 14:25:36.529887-0500 MLRecipeExecutionService [0x6000012bc000] activating connection: mach=false listener=false peer=false name=com.apple.coremedia.videodecoder default 14:25:36.529978-0500 MLRecipeExecutionService [0x41c5d34c0] activating connection: mach=false listener=true peer=false name=(anonymous) default 14:25:36.530004-0500 MLRecipeExecutionService [0x41c5d34c0] Channel could not return listener port. default 14:25:36.530364-0500 MLRecipeExecutionService [0x429a88740] activating connection: mach=false listener=false peer=true name=com.apple.xpc.anonymous.0x41c5d34c0.peer[1167].0x429a88740 default 14:25:36.534523-0500 MLRecipeExecutionService [0x6000012bc000] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() default 14:25:36.534537-0500 MLRecipeExecutionService [0x41c5d34c0] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() default 14:25:36.534544-0500 MLRecipeExecutionService [0x429a88740] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() error 14:25:36.558788-0500 MLRecipeExecutionService CreateWithURL:342: *** ERROR: err=24 (Too many open files) - could not open '<CFURL 0x60000079b540 [0x1fdd32240]>{string = file:///Users/kevin/Library/Mobile%20Documents/com~apple~CloudDocs/Binary%20Formations/Under%20My%20Roof/Core%20ML%20Training%20Data/Household%20Items/Output/2025.01.23_12.55.16/Test/Stove/Test480.webp, encoding = 134217984, base = (null)}' default 14:25:36.559030-0500 MLRecipeExecutionService Error: <private> default 14:25:36.559077-0500 MLRecipeExecutionService Error: <private> Of particular interest is the "Too many open files" message from MLRecipeExecutionService referencing one of the test images. There are a total of 2,555 test images, which I wouldn't think would be a very large set. The system doesn't seem to be running out of memory or anything like that. Near the end of the test run there MLRecipeExecution service had 2934 file descriptors open according to lsof. Has anyone else run into this or know of a workaround? So far I've tried rebooting and recreating the Create ML project. Currently using Create ML Version 6.1 (150.3) on macOS 15.2 (24C101) running on a Mac Studio.
1
0
432
Jan ’25
Is it possible to read japanese tategaki with vision framework
We are building an app which can reads texts. It can read english and Japanese normal texts successfully. But in some cases, we need to read Japanese tategaki (vertically aligned texts). But in that times, the same code gives no output. So, is there any need to change any configuration to read Japanese tategaki? Or is it really possible to read Japanese tategaki using vision framework? lazy var detectTextRequest = VNRecognizeTextRequest { request, error in self.resStr="\n" self.words = [:] // Get OCR result guard let res = request.results as? [VNRecognizedTextObservation] else { return } // separate the words by space let text = res.compactMap({$0.topCandidates(1).first?.string}).joined(separator: " ") var n = 0 self.wordArr=[[]] self.xs = 1 self.ys = 1 var hs = 0.0 // To compare the heights of the words // To get the original axis (top most word's axis), only once for r in res { var word = r.topCandidates(1).first?.string self.words[word ?? ""] = [r.topLeft.x, r.topLeft.y] if(self.cartLabelType == 1){ if(word?.components(separatedBy: CharacterSet(charactersIn: "//")).count ?? 0>2){ self.xs = r.topLeft.x self.ys = r.topLeft.y } } } } }
2
1
551
Jan ’25
Xcode AI Coding Assistance Option(s)
Not finding a lot on the Swift Assist technology announced at WWDC 2024. Does anyone know the latest status? Also, currently I use OpenAI's macOS app and its 'Work With...' functionality to assist with Xcode development, and this is okay, certainly saves copying code back and forth, but it seems like AI should be able to do a lot more to help with Xcode app development. I guess I'm looking at what people are doing with AI in Visual Studio, Cline, Cursor and other IDEs and tools like those and feel a bit left out working in Xcode. Please let me know if there are AI tools or techniques out there you use to help with your Xcode projects. Thanks in advance!
6
0
10k
Jan ’25
Converted Model Preview Issues in Xcode
Hello! I have a TrackNet model that I have converted to CoreML (.mlpackage) using coremltools, and the conversion process appears to go smoothly as I get the .mlpackage file I am looking for with the weights and model.mlmodel file in the folder. However, when I drag it into Xcode, it just shows up as 4 script tags (as pictured) instead of the model "interface" that is typically expected. I initially was concerned that my model was not compatible with CoreML, but upon logging the conversions, everything seems to be converted properly. I have some code that may be relevant in debugging this issue: How I use the model: model = BallTrackerNet() # this is the model architecture which will be referenced later device = self.device # cpu model.load_state_dict(torch.load("models/balltrackerbest.pt", map_location=device)) # balltrackerbest is the weights model = model.to(device) model.eval() Here is the BallTrackerNet() model itself: import torch.nn as nn import torch class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, pad=1, stride=1, bias=True): super().__init__() self.block = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=pad, bias=bias), nn.ReLU(), nn.BatchNorm2d(out_channels) ) def forward(self, x): return self.block(x) class BallTrackerNet(nn.Module): def __init__(self, out_channels=256): super().__init__() self.out_channels = out_channels self.conv1 = ConvBlock(in_channels=9, out_channels=64) self.conv2 = ConvBlock(in_channels=64, out_channels=64) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = ConvBlock(in_channels=64, out_channels=128) self.conv4 = ConvBlock(in_channels=128, out_channels=128) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5 = ConvBlock(in_channels=128, out_channels=256) self.conv6 = ConvBlock(in_channels=256, out_channels=256) self.conv7 = ConvBlock(in_channels=256, out_channels=256) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv8 = ConvBlock(in_channels=256, out_channels=512) self.conv9 = ConvBlock(in_channels=512, out_channels=512) self.conv10 = ConvBlock(in_channels=512, out_channels=512) self.ups1 = nn.Upsample(scale_factor=2) self.conv11 = ConvBlock(in_channels=512, out_channels=256) self.conv12 = ConvBlock(in_channels=256, out_channels=256) self.conv13 = ConvBlock(in_channels=256, out_channels=256) self.ups2 = nn.Upsample(scale_factor=2) self.conv14 = ConvBlock(in_channels=256, out_channels=128) self.conv15 = ConvBlock(in_channels=128, out_channels=128) self.ups3 = nn.Upsample(scale_factor=2) self.conv16 = ConvBlock(in_channels=128, out_channels=64) self.conv17 = ConvBlock(in_channels=64, out_channels=64) self.conv18 = ConvBlock(in_channels=64, out_channels=self.out_channels) self.softmax = nn.Softmax(dim=1) self._init_weights() def forward(self, x, testing=False): batch_size = x.size(0) x = self.conv1(x) x = self.conv2(x) x = self.pool1(x) x = self.conv3(x) x = self.conv4(x) x = self.pool2(x) x = self.conv5(x) x = self.conv6(x) x = self.conv7(x) x = self.pool3(x) x = self.conv8(x) x = self.conv9(x) x = self.conv10(x) x = self.ups1(x) x = self.conv11(x) x = self.conv12(x) x = self.conv13(x) x = self.ups2(x) x = self.conv14(x) x = self.conv15(x) x = self.ups3(x) x = self.conv16(x) x = self.conv17(x) x = self.conv18(x) # x = self.softmax(x) out = x.reshape(batch_size, self.out_channels, -1) if testing: out = self.softmax(out) return out def _init_weights(self): for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.uniform_(module.weight, -0.05, 0.05) if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.BatchNorm2d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) Here is also the meta data of my model: [ { "metadataOutputVersion" : "3.0", "storagePrecision" : "Float16", "outputSchema" : [ { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float32", "formattedType" : "MultiArray (Float32 1 × 256 × 230400)", "shortDescription" : "", "shape" : "[1, 256, 230400]", "name" : "var_462", "type" : "MultiArray" } ], "modelParameters" : [ ], "specificationVersion" : 6, "mlProgramOperationTypeHistogram" : { "Cast" : 2, "Conv" : 18, "Relu" : 18, "BatchNorm" : 18, "Reshape" : 1, "UpsampleNearestNeighbor" : 3, "MaxPool" : 3 }, "computePrecision" : "Mixed (Float16, Float32, Int32)", "isUpdatable" : "0", "availability" : { "macOS" : "12.0", "tvOS" : "15.0", "visionOS" : "1.0", "watchOS" : "8.0", "iOS" : "15.0", "macCatalyst" : "15.0" }, "modelType" : { "name" : "MLModelType_mlProgram" }, "userDefinedMetadata" : { "com.github.apple.coremltools.source_dialect" : "TorchScript", "com.github.apple.coremltools.source" : "torch==2.5.1", "com.github.apple.coremltools.version" : "8.1" }, "inputSchema" : [ { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float32", "formattedType" : "MultiArray (Float32 1 × 9 × 360 × 640)", "shortDescription" : "", "shape" : "[1, 9, 360, 640]", "name" : "input_frames", "type" : "MultiArray" } ], "generatedClassName" : "BallTracker", "method" : "predict" } ] I have been struggling with this conversion for almost 2 weeks now so any help, ideas or pointers would be greatly appreciated! Let me know if any other information would be helpful to see as well. Thanks! Michael
1
0
600
Jan ’25
Can't apply compression techniques on my CoreML Object Detection model.
import coremltools as ct from coremltools.models.neural_network import quantization_utils # load full precision model model_fp32 = ct.models.MLModel(modelPath) model_fp16 = quantization_utils.quantize_weights(model_fp32, nbits=16) model_fp16.save("reduced-model.mlmodel") I'm testing it with the model from one of Apple's source codes(GameBoardDetector), and it works fine, reduces the model size by half. But there are several problems with my model(trained on CreateML app using Full Network): Quantizing to float 16 does not work(new file gets created with reduced only 0.1mb). Quantizing to below 16 values cause errors, and no file gets created. Here are additional metadata and precisions of models. Working model's additional metadata and precision: Mine's additional metadata and precision:
2
0
529
Jan ’25
CoreML Conversion Display Issues
Hello! I have a TrackNet model that I have converted to CoreML (.mlpackage) using coremltools, and the conversion process appears to go smoothly as I get the .mlpackage file I am looking for with the weights and model.mlmodel file in the folder. However, when I drag it into Xcode, it just shows up as 4 script tags instead of the model "interface" that is typically expected. I initially was concerned that my model was not compatible with CoreML, but upon logging the conversions, everything seems to be converted properly. I have some code that may be relevant in debugging this issue: How I use the model: model = BallTrackerNet() # this is the model architecture which will be referenced later device = self.device # cpu model.load_state_dict(torch.load("models/balltrackerbest.pt", map_location=device)) # balltrackerbest is the weights model = model.to(device) model.eval() Here is the BallTrackerNet() model itself import torch.nn as nn import torch class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, pad=1, stride=1, bias=True): super().__init__() self.block = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=pad, bias=bias), nn.ReLU(), nn.BatchNorm2d(out_channels) ) def forward(self, x): return self.block(x) class BallTrackerNet(nn.Module): def __init__(self, out_channels=256): super().__init__() self.out_channels = out_channels self.conv1 = ConvBlock(in_channels=9, out_channels=64) self.conv2 = ConvBlock(in_channels=64, out_channels=64) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = ConvBlock(in_channels=64, out_channels=128) self.conv4 = ConvBlock(in_channels=128, out_channels=128) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5 = ConvBlock(in_channels=128, out_channels=256) self.conv6 = ConvBlock(in_channels=256, out_channels=256) self.conv7 = ConvBlock(in_channels=256, out_channels=256) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv8 = ConvBlock(in_channels=256, out_channels=512) self.conv9 = ConvBlock(in_channels=512, out_channels=512) self.conv10 = ConvBlock(in_channels=512, out_channels=512) self.ups1 = nn.Upsample(scale_factor=2) self.conv11 = ConvBlock(in_channels=512, out_channels=256) self.conv12 = ConvBlock(in_channels=256, out_channels=256) self.conv13 = ConvBlock(in_channels=256, out_channels=256) self.ups2 = nn.Upsample(scale_factor=2) self.conv14 = ConvBlock(in_channels=256, out_channels=128) self.conv15 = ConvBlock(in_channels=128, out_channels=128) self.ups3 = nn.Upsample(scale_factor=2) self.conv16 = ConvBlock(in_channels=128, out_channels=64) self.conv17 = ConvBlock(in_channels=64, out_channels=64) self.conv18 = ConvBlock(in_channels=64, out_channels=self.out_channels) self.softmax = nn.Softmax(dim=1) self._init_weights() def forward(self, x, testing=False): batch_size = x.size(0) x = self.conv1(x) x = self.conv2(x) x = self.pool1(x) x = self.conv3(x) x = self.conv4(x) x = self.pool2(x) x = self.conv5(x) x = self.conv6(x) x = self.conv7(x) x = self.pool3(x) x = self.conv8(x) x = self.conv9(x) x = self.conv10(x) x = self.ups1(x) x = self.conv11(x) x = self.conv12(x) x = self.conv13(x) x = self.ups2(x) x = self.conv14(x) x = self.conv15(x) x = self.ups3(x) x = self.conv16(x) x = self.conv17(x) x = self.conv18(x) # x = self.softmax(x) out = x.reshape(batch_size, self.out_channels, -1) if testing: out = self.softmax(out) return out def _init_weights(self): for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.uniform_(module.weight, -0.05, 0.05) if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.BatchNorm2d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) I have been struggling with this conversion for almost 2 weeks now so any help, ideas or pointers would be greatly appreciated! Thanks! Michael
13
0
1k
Jan ’25
The "right" way to add parameters to Siri voice operations
In this thread, I asked about adding parameters to App Shortcuts. The conclusion that I've drawn so far is that for App Shortcuts, there cannot be any parameters in the prompt, otherwise the system cannot find the AppShortcutsProvider. While this is fine for Shortcuts and non-voice interaction, I'd like to find a way to add parameters to the prompt. Here is the scenario: My app controls a device that displays some content on "pages." The pages are defined in an AppEnum, which I use for Shortcuts integration via App Intents. The App Intent functions as expected, and is able to change the page based on the user selection within Shortcuts (or prompted if using the App Shortcut). What I'd like to do is allow the user to be able to say "Siri, open with ." So far, The closest I've come to understanding how this works is through the .intentsdefinition file you can create (and SiriKit in general), however the part that really confused me there is a button in the File Editor that says "Convert to App Intent." To me, this means that I should be able to use the app intent I've already authored and hook that into Siri, rather than making an entirely new function/code-block that does exactly the same thing. Ideally, that's what I want to do. What's the right way to define this behavior? p.s. If I had to pick an intent schema in the context of AssistantSchemas, I'd say it's closest to the "Open File" one, if that helps. I'd ultimately like to make the "pages" user-customizable so in the long run, that would be what I'd do.
2
0
1.3k
Jan ’25
Conforming an existing AppIntent to the photos domain schema
I have an image based app with albums, except in my app, albums are known as galleries. When I tried to conform my existing OpenGalleryIntent with @AssistantIntent(schema: .photos.openAlbum), I had to change my existing gallery parameter to be called target in order to fit the predefined shape of this domain. Previously, my intent was configured to display as “Open Gallery” with the description “Opens the selected Gallery” in the Shortcuts app. After conforming to the photos domain, it displays as “Open Album” with a description “Opens the Provided Album”. Shortcuts is ignoring my configured title and description now. My code builds, but with the following build warnings: Parameter argument title of a required Assistant schema intent parameter target should not be overridden Implementation of the property title of an AppIntent conforming to AssistantSchemaIntent should not be overridden Implementation of the property description of an AppIntent conforming to AssistantSchemaIntent should not be overridden Is my only option to change the concept of a Gallery inside of my app into an Album? I don't want to do this... Conceptually, my app aligns well with this domain does, but I didn't consider that conforming to the shape of an AI schema intent would also dictate exactly how it's presented to the user. FB16283840
2
2
728
Jan ’25
Easy way to implement facial recognition
Hi everyone😊, I want to implement facial recognition into my app. I was planning to use createML's image classification, but there seams to be a lot of hassle to implement (the JSON file etc.). Are there some other easy to implement options that don't involve advanced coding. Thanks, Oliver
2
0
545
Jan ’25
CreatML stop training
It appears that there is a size limit when training the Tabular Classification model in CreatML. When the training data is small, the training process completes smoothly after a specified period. However, as the data volume increases, the following issues occur: initially, the training process indicates that it is in progress, but after approximately 24 hours, it is automatically terminated after an hour. I am certain that this is not a manual termination by myself or others, but rather an automatic termination by the machine. This issue persists despite numerous attempts, and the only message displayed is “Training Canceled.” I would appreciate it if someone could explain the reason behind this behavior and provide a solution. Thank you for your assistance.
1
0
517
Jan ’25
CoreML Model Instantiation Crashes
Some of my users are experiencing crashes on instantiation of a CoreML model I've bundled with my app. I haven't been able to reproduce the crash on any of my devices. Crashes happen across all iOS 18 releases. Seems like something internal in CoreML is causing an issue. Full stack trace: 6646631296fb42128ddc340b2d4322f7-symbolicated.crash
1
0
489
Jan ’25