Thanks for being a part of WWDC25!

How did we do? We’d love to know your thoughts on this year’s conference. Take the survey here

Create ML

RSS for tag

Create machine learning models for use in your app using Create ML.

Create ML Documentation

Posts under Create ML subtopic

Post

Replies

Boosts

Views

Activity

Training data "isn't in the correct format"
Hi folks, I'm trying to import data to train a model and getting the above error. I'm using the latest Xcode, have double checked the formatting in the annotations file, and used jpgrepair to remove any corruption from the data files. Next step is to try a different dataset, but is this a particular known error? (Or am I doing something obviously wrong?) 2019 Intel Mac, Xcode 15.4, macOS Sonoma 14.1.1 Thanks
1
0
481
Oct ’24
CreateML json format
I'm trying to generate a json for my training data, tried manually first and then tried using roboflow and I still get the same error: _annotations.createml.json file contains field "Index 0" that is not of type String. the json format provided by roboflow was [{"image":"menu1_jpg.rf.44dfacc93487d5049ed82952b44c81f7.jpg","annotations":[{"label":"100","coordinates":{"x":497,"y":431.5,"width":32,"height":10}}]}] any help would be greatly appreciated
4
0
1.2k
Oct ’24
CreateML Object Detection Unable to load model from file for reading
Hi, I'm working on training a createML object detector model; I've run into an issue that has me stumped - when I reach somewhere between 100,000 and 150,000 iterations my model will stop training and error out. More Details: CreateML gives me the error prompt that says it is unable to train the model please delete the model source and start from the beginning or duplicate the model and start from the beginning (slightly paraphrased) I see the following error in the createML console (my user name and UUIDs have been redacted) Unable to load model from file:///Users/<my user name>/Library/Caches/com.apple.dt.createml/projects/<UUID HERE>/sessions/checkpoint.sessions/<UUID Here>//training-000132500.checkpoint: Cannot open file:///Users/<my user name>/Library/Caches/com.apple.dt.createml/projects/<UUID Here>/sessions/checkpoint.sessions/<uuid here> //training-000132500.checkpoint/dir_archive.ini for read. Cannot open /Users/<my username>/Library/Caches/com.apple.dt.createml/projects/<UUID>/sessions/checkpoint.sessions/<UUID>//training-000132500.checkpoint/dir_archive.ini for reading I've gone into my Caches in my Library directory and I see each piece of the file path in finder UNTIL the //training-00132500 piece of the path, so I can at least confirm that createML appears to be unable to create or open the file it needs for this training session. Technology Used: Xcode 16 Apple M1 Pro MacOS 14.6.1 (23G93) I've also verified that Xcode and terminal have full disk permissions in my system preferences - I didn't see an option to add CreateML to this list. I've also ensured that my createML project and its data sources are not in iCloud and are indeed local on my desktop. Lastly, I made more space on my machine, so I should have a little over 1 TB of space. Has anybody experienced this before? Any advice? I am majorly blocked on this issue, so I hope somebody else can help shed some light on this issue! Thanks!
0
0
511
Oct ’24
Create ML not recognizing Acceleration and Rotation Features
Hi, I'm training a model that should detect a forehand and a backend stroke. The data looks like this: activity,timestamp,Acceleration_X,Acceleration_Y,Acceleration_Z,Rotation_X,Rotation_Y,Rotation_Z forehand,0.0,0.08,-0.08,0.03,0.18,0.26,0.32 I can load it in Create ML but it's showing the acceleration and rotation x,y,z as seperate Doubles and not as one feature. What do I have to change to make this work? Thank you
0
0
434
Oct ’24
CreateML
I'm trying to use the Spatial model to perform Object Tracking on a .usdz file that I create. After loading the file, which I can view correctly in the console, I start the training. Initially, I notice that the disk usage on my PC increases. After several GB, the usage stops, but the training progress remains for hours at 0.00% with the message "About 8hr." How can I understand what the issue is? Has anyone else experienced the same problem? Thanks Diego
1
1
568
Oct ’24
Image creation request taking forever.
I have been stuck at the “Early Access Requested” for about 48 hours. Usually they take about an hour or less to accept your request but it seems Like this one is very slow, is an issue on my end or Apple’s. Please let me know if there is a solution.
2
6
1.7k
Oct ’24
How to Fine-Tune the SNSoundClassifier for Custom Sound Classification in iOS?
Hi Apple Developer Community, I’m exploring ways to fine-tune the SNSoundClassifier to allow users of my iOS app to personalize the model by adding custom sounds or adjusting predictions. While Apple’s WWDC session on sound classification explains how to train from scratch, I’m specifically interested in using SNSoundClassifier as the base model and building/fine-tuning on top of it. Here are a few questions I have: 1. Fine-Tuning on SNSoundClassifier: Is there a way to fine-tune this model programmatically through APIs? The manual approach using macOS, as shown in this documentation is clear, but how can it be done dynamically - within the app for users or in a cloud backend (AWS/iCloud)? Are there APIs or classes that support such on-device/cloud-based fine-tuning or incremental learning? If not directly, can the classifier’s embeddings be used to train a lightweight custom layer? Training is likely computationally intensive and drains too much on battery, doing it on cloud can be right way but need the right apis to get this done. A sample code will do good. 2. Recommended Approach for In-App Model Customization: If SNSoundClassifier doesn’t support fine-tuning, would transfer learning on models like MobileNetV2, YAMNet, OpenL3, or FastViT be more suitable? Given these models (SNSoundClassifier, MobileNetV2, YAMNet, OpenL3, FastViT), which one would be best for accuracy and performance/efficiency on iOS? I aim to maintain real-time performance without sacrificing battery life. Also it is important to see architecture retention and accuracy after conversion to CoreML model. 3. Cost-Effective Backend Setup for Training: Mac EC2 instances on AWS have a 24-hour minimum billing, which can become expensive for limited user requests. Are there better alternatives for deploying and training models on user request when s/he uploads files (training data)? 4. TensorFlow vs PyTorch: Between TensorFlow and PyTorch, which framework would you recommend for iOS Core ML integration? TensorFlow Lite offers mobile-optimized models, but I’m also curious about PyTorch’s performance when converted to Core ML. 5. Metrics: Metrics I have in mind while picking the model are these: Publisher, Accuracy, Fine-Tuning capability, Real-Time/Live use, Suitability of iPhone 16, Architectural retention after coreML conversion, Reasons for unsuitability, Recommended use case. Any insights or recommended approaches would be greatly appreciated. Thanks in advance!
6
1
1.2k
Oct ’24
Issue with CreateML annotations.json file
Hi, I am trying to create a multi label image classifier model using CreateML (the one included in Xcode 16.1). However, my annoations.json file won't get accepted by the app. I get the following error: annotations.json file contains field "Index 0" that is not of type String Here is a JSON example which results in said error: [ { "image": "image1.jpg", "annotations": [ { "label": "car-license-plate", "coordinates": { "x": 160, "y": 108, "width": 190, "height": 200 } } ] }, { "image": "image2.jpg", "annotations": [ { "label": "car-license-plate", "coordinates": { "x": 250, "y": 150, "width": 100, "height": 98 } } ] } ]
1
0
646
Nov ’24
unable to run tensorflow on my machine
Hello! I've been trying to run tensorflow on my MBA M3. I previously had an Intel Mac and was able to run tensorflow without any problem. I've been working on a personal project in a directory I made on my previous Mac, that I was running through Jupyter notebook. Now every time I try to run the code, the kernel will die and I'm unsure what to do. I tried following tutorials, but every tutorial I've seen has made me create a new environment to access Jupyter Notebook, but not letting me access notebooks and files that have already been created. I tried to run this following command in terminal and received the subsequent error back. python -m pip install tensorflow-metal ERROR: Could not find a version that satisfies the requirement tensorflow-metal (from versions: none) ERROR: No matching distribution found for tensorflow-metal I've installed miniforge, Xcode, and anaconda onto my computer already and wanted some assistance.
2
0
796
Nov ’24
Source Files from the Session number 424 WWDC2019
In the 2019 WWDC session Training Object Detection Models in Create ML a JSON file named: annotations_832_newdice_copy.json was show alongside with the images folder named: Dice Training Images Two Sets. Are these resources made available for devs ? I am looking to understand whether the 6000 annotations were needed to be done manually ? Meaning, they have annotated around 1000 images making 6 labels on each manually to achieve this source ? Video shows around 1000 images. Can someone please clarify.
2
0
595
Dec ’24
Create ML Trouble Loading CSV to Train Word Tagger With Commas in Training Data
I'm using Numbers to build a spreadsheet that I'm exporting as a CSV. I then import this file into Create ML to train a word tagger model. Everything has been working fine for all the models I've trained so far, but now I'm coming across a use case that has been breaking the import process: commas within the training data. This is a case that none of Apple's examples show. My project takes Navajo text that has been tokenized by syllables and labels the parts-of-speech. Case that works... Raw text: Naaltsoos yídéeshtah. Tokens column: Naal,tsoos, ,yí,déesh,tah,. Labels column: NObj,NObj,Space,Verb,Verb,VStem,Punct Case that breaks... Raw text: óola, béésh łigaii, tłʼoh naadą́ą́ʼ, wáin, akʼah, dóó á,shįįh Tokens column with tokenized text (commas quoted): óo,la,",", ,béésh, ,łi,gaii,",", ,tłʼoh, ,naa,dą́ą́ʼ,",", ,wáin,",", ,a,kʼah,",", ,dóó, ,á,shįįh (Create ML reports mismatched columns) Tokens column with tokenized text (commas escaped): óo,la,\,, ,béésh, ,łi,gaii,\,, ,tłʼoh, ,naa,dą́ą́ʼ,\,, ,wáin,\,, ,a,kʼah,\,, ,dóó, ,á,shįįh (Create ML reports mismatched columns) Tokens column with tokenized text (commas escape-quoted): óo,la,\",\", ,béésh, ,łi,gaii,\",\", ,tłʼoh, ,naa,dą́ą́ʼ,\",\", ,wáin,\",\", ,a,kʼah,\",\", ,dóó, ,á,shįįh (record not detected by Create ML) Tokens column with tokenized text (commas escape-quoted): óo,la,"","", ,béésh, ,łi,gaii,"","", ,tłʼoh, ,naa,dą́ą́ʼ,"","", ,wáin,"","", ,a,kʼah,"","", ,dóó, ,á,shįįh (Create ML reports mismatched columns) Labels column: NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Punct,Space,NSub,NSub,Punct,Space,Conj,Space,NSub,NSub Sample From Spreadsheet Solution Needed It's simple enough to escape commas within CSV files, but the format needed by Create ML essentially combines entire CSV records into single columns, so I'm ending up needing a CSV record that contains a mixture of commas to use for parsing and ones to use as character literals. That's where this gets complicated. For this particular use case (which seems like it would frequently arise when training a word tagger model), how should I properly escape a comma literal?
6
0
710
Dec ’24
Create ML how to handle polygon annotations?
I have images, and I annotated with polygon, actually simple trapezoid, so 4 points. I have been trying and trying but can't get Create ML to work. I am trying Object Detection. I am not a real programmer so really would greatly appreciate some guidance to help to get this model created. I think I made a Detectron2 model, and tried to get that converted into a mlmodel I need for xcode but had troubles there also. thank you. { "annotation": "IMG_1803.JPG", "annotations": [ { "label": "court", "coordinates": { "x": [ 187, 3710, 2780, 929 ], "y": [ 1689, 1770, 478, 508 ] } } ] },
2
0
684
Jan ’25
Help Needed: SwiftUI View with Camera Integration and Core ML Object Recognition
Hi everyone, I'm working on a SwiftUI app and need help building a view that integrates the device's camera and uses a pre-trained Core ML model for real-time object recognition. Here's what I want to achieve: Open the device's camera from a SwiftUI view. Capture frames from the camera feed and analyze them using a Create ML-trained Core ML model. If a specific figure/object is recognized, automatically close the camera view and navigate to another screen in my app. I'm looking for guidance on: Setting up live camera capture in SwiftUI. Using Core ML and Vision frameworks for real-time object recognition in this context. Managing navigation between views when the recognition condition is met. Any advice, code snippets, or examples would be greatly appreciated! Thanks in advance!
1
0
663
Jan ’25
How to confirm whether CreatML is training
I am currently training a Tabular Classification model in CreatML. The dataset comprises 30 features, including 1,000,000 training data points and 1,000,000 verification data points. Could you please estimate the approximate training time for an M4Max MacBook Pro? During the training process, CreatML has been displaying the “Processing” status, but there is no progress bar. I would like to ascertain whether the training is still ongoing, as I have often suspected that it has ceased.
1
0
585
Jan ’25
CreatML stop training
It appears that there is a size limit when training the Tabular Classification model in CreatML. When the training data is small, the training process completes smoothly after a specified period. However, as the data volume increases, the following issues occur: initially, the training process indicates that it is in progress, but after approximately 24 hours, it is automatically terminated after an hour. I am certain that this is not a manual termination by myself or others, but rather an automatic termination by the machine. This issue persists despite numerous attempts, and the only message displayed is “Training Canceled.” I would appreciate it if someone could explain the reason behind this behavior and provide a solution. Thank you for your assistance.
1
0
502
Jan ’25
Create ML app seems to stop testing without error
I have a smallish image classifier I've been working on using the Create ML app. For a while everything was going fine, but lately, as the dataset has gotten larger, Create ML seems to stop during the testing phase with no error or test results. You can see here that there is no score in the result box, even though there are testing started and completed messages: No error message is shown in the Create ML app, but I do see these messages in the log: default 14:25:36.529887-0500 MLRecipeExecutionService [0x6000012bc000] activating connection: mach=false listener=false peer=false name=com.apple.coremedia.videodecoder default 14:25:36.529978-0500 MLRecipeExecutionService [0x41c5d34c0] activating connection: mach=false listener=true peer=false name=(anonymous) default 14:25:36.530004-0500 MLRecipeExecutionService [0x41c5d34c0] Channel could not return listener port. default 14:25:36.530364-0500 MLRecipeExecutionService [0x429a88740] activating connection: mach=false listener=false peer=true name=com.apple.xpc.anonymous.0x41c5d34c0.peer[1167].0x429a88740 default 14:25:36.534523-0500 MLRecipeExecutionService [0x6000012bc000] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() default 14:25:36.534537-0500 MLRecipeExecutionService [0x41c5d34c0] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() default 14:25:36.534544-0500 MLRecipeExecutionService [0x429a88740] invalidated because the current process cancelled the connection by calling xpc_connection_cancel() error 14:25:36.558788-0500 MLRecipeExecutionService CreateWithURL:342: *** ERROR: err=24 (Too many open files) - could not open '<CFURL 0x60000079b540 [0x1fdd32240]>{string = file:///Users/kevin/Library/Mobile%20Documents/com~apple~CloudDocs/Binary%20Formations/Under%20My%20Roof/Core%20ML%20Training%20Data/Household%20Items/Output/2025.01.23_12.55.16/Test/Stove/Test480.webp, encoding = 134217984, base = (null)}' default 14:25:36.559030-0500 MLRecipeExecutionService Error: <private> default 14:25:36.559077-0500 MLRecipeExecutionService Error: <private> Of particular interest is the "Too many open files" message from MLRecipeExecutionService referencing one of the test images. There are a total of 2,555 test images, which I wouldn't think would be a very large set. The system doesn't seem to be running out of memory or anything like that. Near the end of the test run there MLRecipeExecution service had 2934 file descriptors open according to lsof. Has anyone else run into this or know of a workaround? So far I've tried rebooting and recreating the Create ML project. Currently using Create ML Version 6.1 (150.3) on macOS 15.2 (24C101) running on a Mac Studio.
1
0
427
Jan ’25
Error when using Image Feature Print v2
Hi all, I'm working on an app to classify dog breeds via CoreML, but when I try training a model using Image Feature Print v2, I get the following error: Failed to create CVPixelBufferPool. Width = 0, Height = 0, Format = 0x00000000 Strangely, when I switch back to Image Feature Print v1, the model trains perfectly fine. I've verified that there aren't any invalid or broken images in my dataset. Is there a fix for this? Thanks!
0
0
419
Jan ’25