Using Tensorflow for Silicon gives inaccurate results when compared to Google Colab GPU (9-15% differences). Here are my install versions for 4 anaconda env's. I understand the Floating point precision can be an issue, batch size, activation functions but how do you rectify this issue for the past 3 years?
1.) Version TF: 2.12.0, Python 3.10.13, tensorflow-deps: 2.9.0, tensorflow-metal: 1.2.0, h5py: 3.6.0, keras: 2.12.0
2.) Version TF: 2.19.0, Python 3.11.0, tensorflow-metal: 1.2.0, h5py: 3.13.0, keras: 3.9.2, jax: 0.6.0, jax-metal: 0.1.1,jaxlib: 0.6.0, ml_dtypes: 0.5.1
3.) python: 3.10.13,tensorflow: 2.19.0,tensorflow-metal: 1.2.0, h5py: 3.13.0, keras: 3.9.2, ml_dtypes: 0.5.1
4.) Version TF: 2.16.2, tensorflow-deps:2.9.0,Python: 3.10.16, tensorflow-macos 2.16.2, tensorflow-metal: 1.2.0, h5py:3.13.0, keras: 3.9.2, ml_dtypes: 0.3.2
Install of Each ENV with common example:
Create ENV: conda create --name TF_Env_V2 --no-default-packages
start env: source TF_Env_Name
ENV_1.) conda install -c apple tensorflow-deps , conda install tensorflow,pip install tensorflow-metal,conda install ipykernel
ENV_2.) conda install pip python==3.11, pip install tensorflow,pip install tensorflow-metal,conda install ipykernel
ENV_3) conda install pip python 3.10.13,pip install tensorflow, pip install tensorflow-metal,conda install ipykernel
ENV_4) conda install -c apple tensorflow-deps, pip install tensorflow-macos, pip install tensor-metal, conda install ipykernel
Example used on all 4 env:
import tensorflow as tf
cifar = tf.keras.datasets.cifar100 (x_train, y_train), (x_test, y_test) = cifar.load_data() model = tf.keras.applications.ResNet50( include_top=True, weights=None, input_shape=(32, 32, 3), classes=100,)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"]) model.fit(x_train, y_train, epochs=5, batch_size=64)
Our engineering teams need to investigate this issue, as resolution may involve changes to Apple's software. Please file a bug report, include a small Xcode project (if possible) and complete directions that can be used to reproduce the problem, and post the Feedback number here once you do. If you post the Feedback number here I'll check the status next time I do a sweep of forums posts where I've suggested bug reports.
Bug Reporting: How and Why? has tips on creating your bug report.