

QuickTime and ISO Base Media
File Formats and Spatial and
Immersive Media
Format additions

Version 1.9.8 (Beta)
June 9, 2025

Note: The information contained within this document is
preliminary and is subject to change.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of

 Apple Inc., registered in the U.S. and other countries. | 2022-07-08

June 9, 2025 1.9.8 (Beta)

Introduction ..3
References ..4
Stereo Video ...4

Stereoscopic, Stereopsis and Stereo Media ..4
Stereoscopic Video Tracks ..5
Multiview Video Tracks and MV-HEVC Compression ...5

Video Extended Usage ..6
Video Extended Usage Box Hierarchy ..6
1. Video Extended Usage (‘vexu’) box ..8
1.2. Required box types (‘must’) box ...11
1.3. Video stereo-view signaling ...14
2. Video projection signaling ..21
3.Video view packing ...27
4.Lens collection information ..28

Use of other signaling extensions ...41
Horizontal field-of-view box ..41

Auxiliary Video Track Handler Type ..42
Spatial Audio ...42

Spatial Audio Technologies ...42
Timed Metadata and Spatial Media ...43

New data types ...43
Caption-parallax timed metadata items ..44
Motion timed metadata items ...44
Comfort-related motion-analysis timed-metadata items ..47

Conclusion ..48
Document Revision History ..49

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 2

June 9, 2025 1.9.8 (Beta)

Introduction
This document describes Apple extensions of, or specialized use of, the ISO Base Media File
Format (a.k.a. ISOBMFF) to support spatial media. These extensions also apply to the
QuickTime File Format. Spatial media is intended to produce a richer experience for the user;
whether a richer audio experience, a richer visual experience, or a combination of the two.
This document also introduces features that can be referenced from movie profiles, which are
collections of allowed media essence carried in tracks and metadata, associated media
signaling, and required relationships among the former, to ensure suitability for playback to
devices or production for such delivery. Production, delivery and other aspects of profiles
indicate use of particular tools such as encoded media with their own media profiles and levels,
required metadata, or other signaling. If an implementation supports the movie profile's tools
individually, they are well positioned to support the movie profile required in a broader
ecosystem. This document introduces new format tools, and also movie profiles that make use
of existing and new format tools. Movie profiles are documented separately.
Like the QuickTime File Format (QTFF) upon which it is based, the ISOBMFF format is meant to
serve as a container of media using tracks and movie-level structures. The movie format of that
media continues to evolve, from the earliest “postage stamp” (i.e., very low-resolution) video,
with one- and two-channel uncompressed or barely compressed audio, to modern formats
performing remarkable levels of visual compression for 4K and even 8K video, with very rich
multichannel, ambisonic and object-based audio encoding. This is coupled with facilities to
carry and present captions, such as WebVTT text tracks or closed captions embedded with
video. Static and timed metadata can be carried to augment the presented media. Still other
kinds of media tracks have been supported and will likely get added.
To support media that delivers rich spatial experiences, the QTFF and ISOBMFF foundations are
being extended with new media formats, extensions to supported media formats, and new
constructs to inform relationships among the new and earlier supported media. Some of these
extensions are specific to their spatial nature, whereas others are fundamental and used by the
former. This is all intended to be done in a way—where possible—so an existing ISOBMFF or
QTFF player or processor can interact with the spatial media, possibly in a reduced but
compatible form, while allowing new playback or processing to take fuller advantage of the
newly afforded richness.
This document describes new and updated file format structures to support spatial media.
Some of these structures are accessible through Apple AVFoundation and CoreMedia
framework interfaces, and those serve as the preferred alternative to direct structural access
when running on a platform with Apple frameworks available. Those reading or writing the
format directly—pursuant to relevant licensing—should however be able to accomplish their
goals with the structural descriptions in the following sections.
Another consideration for ISOBMFF is that it is used in a fragmented movie form for HTTP-
based delivery technologies such as HTTP Live Streaming. The support in standalone MP4 files
and fragmented MP4 resources is much the same.

Note: The words “may," “should," and "shall" are used in the conventional specification
sense—that is, respectively, to denote permitted, recommended, or required
behaviors.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 3

June 9, 2025 1.9.8 (Beta)

Note: All coordinate systems used in this specification are right-handed unless otherwise
specified. Following conventions, +X is to the right and +Y upward, as in quadrant 1 of
a 2D Cartesian coordinate system. The Z-axis corresponds to the optical axis, and +Z
points into or toward the camera.

References
[QTFF] QuickTime File Format (QTFF), 2016
[ISOBMFF] ISO/IEC 14496-12:2020 ISO Base Media File Format
[ISONALU] ISO/IEC 14496-15:2019 “Carriage of network abstraction layer (NAL) unit structured
video in the ISO base media file format”
[HEVC] ISO/IEC 23008-2:2020 “High efficiency video coding”
[HEIF] ISO/IEC 23008-12:2022 "Image File Format"
[METADATA] “Video Contour Map Payload Metadata within the QuickTime Movie File Format—
Format Additions”
[OMNI] C. Mei and P. Rives. Single View Point Omnidirectional Camera Calibration from Planar
Grids. In ICRA, 2007.

Stereo Video
Stereoscopic, Stereopsis and Stereo Media
Just as stereo audio indicates different audio for the left and the right ear, visual media can be
stereoscopic, in which a view is available to be presented to the left eye and another view is
available to be presented simultaneously to the right eye. The presentation of both the left and
right views allows for an effect known as stereopsis, which can be defined as:

the perception of depth produced by the reception in the brain of visual stimuli from both
eyes in combination; binocular vision.

The production and display of this is sometimes referred to in cinema as 3D, and the
implementation and storage of the views can vary. This cinema use of 3D should be
distinguished from 3D rendering, involving a framework like Apple's Metal framework, where
geometry, materials, lighting and cameras are modeled and rendered by a GPU or CPU. In the
latter case, such three-dimensional rendering might produce a view as seen from the left eye
and a simultaneous view seen from the right eye and therefore be stereoscopic. Rendering of a
scene might however produce a single view that is not stereoscopic. This is sometimes called
monoscopic.
Stereoscopic media can also be captured photographically, where two cameras are offset
horizontally to produce video where the left-eye view and the right-eye view are each encoded.
In this case, there’s not necessarily any modeling of the scene or any GPU rendering. Playback
presents the left-captured view to the viewer’s left eye and the right-captured view to the
viewer’s right eye. These left- and right-captured views might also have been processed.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 4

June 9, 2025 1.9.8 (Beta)

Although storage strategies can vary, this document describes how to store stereoscopic
content using standardized ISO/ITU formats and extensions to QTFF/ISOBMFF.

Stereoscopic Video Tracks
QTFF/ISOBMFF standalone and fragmented movies can include a single video track associated
with both the left and the right eye. This video track’s access units carry both a base and
secondary layer that correspond to a primary stereo eye view (left or right) and the
complementary stereo eye (i.e., right if the primary is the left, left if the primary is the right).
Another option, available to production processes only, is to use frame packing, in which both
left and right stereo eye views are carried adjacently in the decoded image in a single layer
(either side-by-side or over-under).
The expectation is that both stereo-eye views (i.e., the left-eye view and right-eye view) are
shown to their corresponding eyes simultaneously. Both stereo views are available and
synchronized according to the movie timeline. When played, stereopsis is achieved.

Note: The ability to produce a movie with just one stereo eye video track (whether left or
right) can be useful in production workflows. Two tracks in the same movie or in two movies
might be useful. These might be combined into a new movie either by encoding with both
views in one video track or, less commonly, by carrying two video tracks. Though
potentially applicable to QTFF/ISOBMFF, it is not a described use case here.

This document introduces a VisualSampleEntry extension that can signal, among other
things, whether the associated video track is stereoscopic and which stereo eyes are carried in
that video track. This new signaling is referred to as video extended usage and is described in a
later section of this document. For now, the point is that this allows a movie reader to detect
stereo-related video tracks and to identify the stereo eyes contributed by that track so it can
configure presentation or other processing. Whereas the video track itself uses a video-
compression format and signals it has a left and right stereo view, the video extended usage is
meant to be more easily parsed and to be applicable to non-multiview video (i.e., not MV-HEVC
video).

Multiview Video Tracks and MV-HEVC Compression
A QTFF movie (i.e., .mov) or ISOBMFF (e.g., .mp4) movie video track carries video as either
uncompressed or encoded video media samples. In the case of compressed video, High
Efficiency Video Coding [HEVC] defines extensions to encode more than one view in the
compressed bitstream for each coded video frame (or access unit). Defined in Annex G of the
HEVC spec [HEVC], Multiview High Efficiency Video Coding defines how layers corresponding
to views can be encoded and associated. This is sometimes written as MV-HEVC, for Multiview
HEVC.
The QuickTime ImageDescription or ISOBMFF VisualSampleEntry (each referred to as
visual sample entry) shall include a video extended usage visual sample-entry extension box
(described later in this document) indicating which stereo eye views—left, right, or both—are
carried in the MV-HEVC video track. For MV-HEVC, both left- and right-eye views should be
available. A hero eye, indicating the default stereo eye, may optionally be signaled. This
construct allows a client to determine the stereoscopic nature of the video track without
needing to parse for MV-HEVC bitstream details in the decoder configuration.
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 5

June 9, 2025 1.9.8 (Beta)

The video bitstream requirements of MV-HEVC coding, visual sample entry, and video media
samples are described in the document Apple HEVC Stereo Video Interoperability Profile.
The described use with MV-HEVC encoded video should not be seen as a limitation on
applicability to other multilayered or multiview encoding.

Video Extended Usage
This specification introduces an optional visual sample-entry extension that can signal
additional aspects regarding the use of the video track’s decoded frames. The new extension,
called the video extended usage, uses the box type ‘vexu’ (optionally pronounced as “vex
you”). Details necessary for video-frame decoding are still carried in the visual sample-entry
header (e.g., the compression type or the dimensions), as well as in other visual sample-entry
extensions (e.g., ‘colr’ and compression type specific decoder configurations). The ‘vexu’
extension describes aspects beyond fundamental decode. For instance, it may specify that the
video frames are stereoscopic or otherwise organized, requiring the video frames to be
processed or displayed in a special way before presenting to the viewer.
Traditionally, a video track within a movie file or movie fragments can be decoded and
immediately presented with little additional processing, other than perhaps scaling, cropping
and placement. For video captured in the real world, such as from a camera or computer, this is
the norm. Even non-linear editing mostly works with video as stored in the movie files, perhaps
applying effects, but otherwise encoding video that is directly presentable.
Increasingly today, a video track may be used as input into a rendering process and may not be
suitable to show a viewer immediately. For example, a stereoscopic “3D” movie should present
the left-eye view to the viewer’s left eye, and the right-eye view to the viewer’s right eye. To do
this, it is important to know first that the video track delivers stereoscopic views, and secondly
which of those views are available. For MV-HEVC video, the presence of [HEVC] and [ISONALU]
constructs (such as the ‘hvcC’ and ‘lhvC’ extension data) might seem sufficient, but
unfortunately requires all readers to parse significant HEVC detail. Generally, a guiding principle
is not to rely upon codec-level signaling to understand things that are needed at the container
level. Here, the video track’s ‘vexu’ visual sample-entry extension serves the role of easy-to-
interpret signaling that the video is stereoscopic. The ‘vexu’ visual sample-entry extension must
be consistent with what is signaled in the decoder configuration.
Beyond MV-HEVC, it may be desirable to use other video-compression formats (e.g., non-
Multiview HEVC) or uncompressed video to carry stereoscopic video without requiring their
fundamental decoded bitstream to signal the stereo use—something the format might not
support. A video extended usage extension can be added, indicating that a video track carries
two stereo eyes or is for only one of the two stereo eyes. A ‘vexu’ extension can also be added,
indicating that the decoded video is organized in some other way described in a future version
of this specification. This can be combined with stereoscopic detail that there is both a left and
a right stereo eye view. Here, playback and processing need to understand the video track uses
this alternative organization so it can route the left-view and the right-view portions of the
decoded frame to the respective viewer eye.

Video Extended Usage Box Hierarchy
The video extended usage extension box specifies the usage of the decode of the video
samples, and details relevant to that usage. This is an optional extension and needed only when
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 6

June 9, 2025 1.9.8 (Beta)

special or useful interpretation of the video in playback or processing is required. If the state
signaled is not required for playback or processing, the extension may still be present, but there
is no expectation the reader understands it.

Note: VisualSampleEntry extensions parallel to this new video extended usage extension
box may exist for additional, sometimes legacy, signaling (e.g., the horizontal field of
view extension box with 'hfov' box type, described in the section "Horizontal field of
view box" later in this document).

This extension box is a box hierarchy, and contains further boxes signaling particular aspects of
the video. These contained boxes may be leaf boxes—typically a FullBox—or box hierarchies
themselves. There is also a mechanism to indicate that contained boxes must be understood by
a reader and, if not, that that part of the box hierarchy has failed to be processed. That error can
propagate upwards, failing within a local subtree or even in the entire video extended usage box
extension. This can in turn indicate the video should not be presented or processed, as the
reader’s implementation lacks sufficient support.

Note: The structure of the video extended usage box is made up of boxes, each described
in following sections. Each box description indicates the mandatory nature of that
box. In some cases, a box may be marked as No for Mandatory, in that the structure
of the container box does not require this child box to exist. However, a particular
movie profile (described in a parallel Movie Profiles document) may indicate that the
box is required for conformance with that profile. This document does not indicate
within each box definition which profiles require its presence. A profile feature table
serves that purpose.

Table 1. Current box types defined in the ‘vexu’ box hierarchy
FourCC FourCC FourCC FourCC FourCC FourCC Box syntax element
vexu VideoExtendedUsageBox

must1 RequiredBoxTypesBox
eyes StereoViewBox

must1 RequiredBoxTypesBox
stri StereoViewInformationBox
hero HeroStereoEyeDescriptionBox
cams StereoCameraSystemBox

blin StereoCameraSystemBaselineBox
cmfy StereoComfortBox

dadj StereoComfortDisparityAdjustmentBox
proj ProjectionBox

must1 RequiredBoxTypesBox

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 7

June 9, 2025 1.9.8 (Beta)

Note: must1: A must box may occur as a child box in any box hierarchy, to indicate reader
responsibility for understanding any child boxes of the must box's parent box. These locations
are not enumerated in the above table. Exemplar must boxes are included in the table, but these
positions should not be considered exhaustive.

1. Video Extended Usage (‘vexu’) box
This section describes how the video extended usage extension box is organized and the
constituent boxes.

1.1. Definition
Box Type: ‘vexu’
Container: Visual sample entry (different coding types)

prji ProjectionInformationBox
. . . One of different per projection type boxes if

needed
pack ViewPackingBox

must1 RequiredBoxTypesBox
pkin ViewPackingInformationBox

lnsc CameraSystemLensCollectionBox
lens CameraSystemLensBox (one or more)

lnhd CameraSystemLensHeaderBox
rdim CameraSystemLensReferenceDimensions
lnin CameraSystemLensIntrinsicsBox
ldst CameraSystemLensDistortionsBox
lfad CameraSystemLensFrameAdjustmentBox
lnex CameraSystemLensExtrinsicsBox (one per

lens)
must1 RequiredBoxTypesBox
corg CameraSystemOriginSourceBox
cxfm CameraSystemTransformBox

uqua CameraSystemUnitQuaternionTransformBox
hfov HorizontalFieldOfViewBox

FourCC FourCC FourCC FourCC FourCC FourCC Box syntax element

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 8

June 9, 2025 1.9.8 (Beta)

Mandatory: No
Quantity: Zero or one
The video extended usage extension is a QuickTime File Format atom [QTFF], which is the same
as Box in ISO/IEC 14496-12 [ISOBMFF]. As we use the bitstream syntax from ISO/IEC
14496-12, we use box interchangeably with atom. References to ImageDescription for QTFF are
also interchangeable with references to the ISO 14496-12 VisualSampleEntry.
The video extended usage box is held in a VideoExtendedUsageBox and has the ISO box
type of ‘vexu’, for video extended usage.
As a box, it can contain zero or more child boxes that together signal the nature of the
associated track samples’ extended usage. Having no child boxes is valid but likely not useful.
Having only child free-space boxes (i.e., a FreeSpaceBox) is appropriate if the intention is to
reserve space in the VisualSampleEntry.
To allow new or otherwise unknown VideoExtendedUsageBox child boxes to be introduced
while allowing older readers to know they do not understand enough to process or present the
video track, a mechanism is introduced to indicate mandatory and, by implication, optional child
boxes. Additionally, child boxes can indicate whether their own structure can be optional, so
readers can recognize versions they do not support.
New boxes should not be introduced into the VideoExtendedUsageBox unless documented in
this specification or in a successor version of this specification.

1.2. Syntax
aligned(8) class VideoExtendedUsageBox extends Box(‘vexu’) {
 RequiredBoxTypesBox(); // optional if no required boxes
specified
 StereoViewBox(); // optional
 ViewPackingBox(); // optional
 ProjectionBox(); // optional
 CameraSystemLensCollectionBox() // required if lens signaling present
 Box() any_box; // other optional boxes with FreeSpaceBox()
reserved for its expected use
}

1.3.Semantics
The VideoExtendedUsageBox contains zero or more child boxes that signal
something about the use of the video. Child boxes will be defined in this specification
now or in the future. Child boxes might be defined in external specifications, but the
box_type used there should be registered so as not to collide with boxes introduced in
this or related specifications. The order of child boxes in the
VideoExtendedUsageBox, and in all contained boxes recursively, is not prescribed.
A reader should be prepared to find boxes in any order.

Note: As FreeSpaceBox (‘free’) has a very common meaning in ISOBMFF and
QTFF, one or more free-space boxes may occur among the child
boxes and should be interpreted as having no other meaning than taking
up space. There is no guarantee that the payload of a FreeSpaceBox
contains exclusively zero (0) bytes, but that is encouraged.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 9

June 9, 2025 1.9.8 (Beta)

Note: An empty VideoExtendedUsageBox (i.e., containing no child boxes) is
allowed but should generally not be included in the VisualSampleEntry. It
may however be useful to reserve space by including a
VideoExtendedUsageBox in concert with a contained FreeSpaceBox
(‘free’).

New child boxes may be introduced in the future that are not described in this spec.
There is a mechanism in the structure of VideoExtendedUsageBox to signal the set of
child boxes that an implementation must understand in order to usefully process the
video track. This allows future boxes to be introduced, and older implementations to
know they should not present the video with newer signaled features.
Besides standard boxes, the VideoExtendedUsageBox may contain zero or more
boxes that describe specific kinds of signaling. In the following section, each kind of box
is described.
Note that a VideoExtendedUsageBox should carry only one child box for a specific
feature. So, for example, there should not be more than one feature box for stereo-view
signaling.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 10

June 9, 2025 1.9.8 (Beta)

A VideoExtendedUsageBox with contained boxes might look like the following:

This ‘vexu’ box contains an ’eyes’ box and another box. The second box, the 'abcd'
box, is optional, but if its type is included in the ‘must’ box, that indicates that it must be
understood by the reader. ‘free’ boxes allow space to be reserved. The other box (i.e.,
'abcd') represents an unknown but not required box.
The order of child boxes within a box may vary. Readers should not expect a fixed order
of child boxes at any level. A writer should not include a child box of a particular type
more than once if it is documented to occur only once.
1.2.Required box types (‘must’) box
1.2.1.Definition
Box Type: ‘must’
Container: A video box within the video extended usage box (‘vexu’) or within contained
boxes
Mandatory: No
Quantity: Zero or one
If a parent box at any level within the VideoExtendedUsageBox has a 'must' box,
that 'must' box contains a list of box types corresponding to boxes that are peers to the
'must' box and that the reader must successfully interpret in order for the parent box to
be successfully interpreted. In other words, if the reader does not recognize a required
box type, or if it fails to parse that box or any required child box of that box, the reader
must consider that to be a failure to parse the parent box. If the

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 11

vexu

eyes

has left, has right

stri

[eyes]

must

left

hero

000…0

free

????

abcd

June 9, 2025 1.9.8 (Beta)

VideoExtendedUsageBox box is considered failed, the track is to be ignored by the
reader.
Each kind of child box within a VideoExtendedUsageBox might serve to signal a
feature according to this specification. The set of boxes is interpreted by the reader to
understand what the video represents (e.g., it uses stereo views). Some of the signaling
is necessary for further processing. Other boxes may be informative but not strictly
required for interpretation. It’s important to understand all required boxes.
RequiredBoxTypesBox enables the adding of new boxes in the future that may be
required for interpretation and further processing.
Each box within the VideoExtendedUsageBox may contain any hierarchy of boxes
suitable to signal some aspect about the video. Some of these may be boxes with a
hierarchy of other boxes, and some may be full boxes. The RequiredBoxTypesBox
enumerates the box types of its sibling boxes, corresponding to required boxes. If not
enumerated within the RequiredBoxTypesBox, the child box’s interpretation is
optional.
The RequiredBoxTypesBox contains an array of FourCCs, corresponding to box
types. If an entry is 0, the entry is reserved and is not interpreted as a required box type.
Free-space boxes of box type ‘free’ should not be included in a
RequiredBoxTypesBox. If a RequiredBoxTypesBox includes a box type that
doesn’t correspond to a child box, the reader can ignore the absence but might want to
log this for diagnostic purposes. The use of box types of missing boxes within a
RequiredBoxTypesBox is, however, discouraged.
The FreeSpaceBox box type of ‘free’ should not be referenced from a
RequiredBoxTypesBox.
The RequiredBoxTypesBox can also occur within other boxes within the
VideoExtendedUsageBox box hierarchy that are themselves box hierarchies. These
uses of RequiredBoxTypesBox serve to indicate local requirements on boxes that
must be recognized and understood for local parsing to be valid. A local box can fail,
and that influences the validity of the parent box if the parent box itself is referenced
from another RequiredBoxTypesBox that is a sibling of the parent box.
1.2.2.Syntax
aligned(8) class RequiredBoxTypesBox extends FullBox(‘must’, 0, 0) {
 unsigned int(32) required_box_types[];
}

1.2.3.Semantics
required_box_types is an array of zero or more box types corresponding to
sibling boxes that must be understood by readers, to properly process the video
associated with the VideoExtendedUsageBox. For each non-zero entry in
required_box_types[], the reader should confirm the box type is recognized. A
value of zero (0) in a required_box_types[] entry can be ignored, allowing for
space for entries to be reserved.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 12

June 9, 2025 1.9.8 (Beta)

1.2.4.Reader Behavior and RequiredBoxTypesBox
A reader of a movie-file video track with an associated VideoExtendedUsageBox
should be able to detect whether it understands enough about the
VideoExtendedUsageBox contents to process the video beyond fundamental decoding.
This further processing, interpretation and/or rendering is what extended refers to
within the identifier name “VideoExtendedUsageBox”.
This specification is intended to be extended in future versions. A particular video track
may carry several kinds of signaling that differ from other video tracks within the movie
file, or in other movie files. The kind of signaling within a box can itself evolve over time.
In all these cases, it is important to know if the set of child boxes of a box must be
understood. Although the most obvious case is child boxes of
VideoExtendedUsageBox, the approach can apply to any box serving as the root of
a box hierarchy within the larger hierarchy.
The following describes reader behavior that is aware of RequiredBoxTypesBox:

1. Read (or start processing) the box hierarchy (e.g., VideoExtendedUsageBox).
2. Retrieve the contained RequiredBoxTypesBox child box, if any.

1. If present, confirm all non-zero entries of required_box_types[] are
recognized box types, and if not, treat the parent box of the
RequiredBoxTypesBox as not processable.

2. Ignore all zeroed entries of required_box_types[].
3. Enumerate each non-zero box type in the required_box_types[] of the

child RequiredBoxTypesBox of the VideoExtendedUsageBox, using an
index from 0 to the length of required_box_types[] minus 1, and confirm
the referenced box is understood.

1. For each successive index, retrieve the child box with
required_box_types[index] and confirm understanding of its
structure.

1. For a child FullBox, the reader should consider the version and
flags to confirm understanding, as well as anything else that may
be relevant to its interpretation.

2. For child boxes that are box hierarchies themselves and allow
RequiredBoxTypesBox, the reader should descend into the
box, retrieve the optional contained RequiredBoxTypesBox
and perform this algorithm recursively.

3. If the parsing of the FullBox or the child box hierarchy fails, the
reader should treat the current level as invalid and propagate that
failure upwards. Any semantics discovered at the current level
should not be propagated upwards, as partial semantics is

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 13

June 9, 2025 1.9.8 (Beta)

misleading (e.g., stereo view and something else both being
required should not signal stereo views if the other parsing fails).

The VideoExtendedUsageBox parsing follows this same algorithm. In this case,
however, failing to parse required child boxes of VideoExtendedUsageBox means
the track has failed to parse. This can best be interpreted as though the entire video
track is unavailable.
1.3.Video stereo-view signaling
The StereoViewBox signals if the video track represents stereo 3D content. This can
take the form of a track that delivers both a left and a right stereo-eye view, or a track
that carries only the left or the right stereo eye.
If both left and right stereo eyes are carried, the views might be combined in one image
and organized in some way, or they might be contained in some kind of multiview
coding.
If the left stereo eye is in one video track and the right stereo eye is in a second video
track, each carries its own VideoExtendedUsageBox with a StereoViewBox. The
indication of which eye is carried is appropriate for each corresponding video track.
For completeness, it is also possible to signal monoscopic video, which is to say no
stereo-view carriage. If this is the case, however, the StereoViewBox can be
eliminated from the VideoExtendedUsageBox. If the VideoExtendedUsageBox
would be left with no child boxes, the VideoExtendedUsageBox can be eliminated
from the VisualSampleEntry as well.
If the recorded stereo video has a designated “hero” eye, the StereoViewBox carries
a HeroStereoEyeDescriptionBox. There are rules that require signaling when the
stereo eye video is separated into two video tracks, with each track carrying only one of
the stereo eyes.
1.3.1.Definition
Box Type: ‘eyes’
Container: Video extended usage box (‘vexu’)
Mandatory: No
Quantity: Zero or one
1.3.2.Syntax
aligned(8) class StereoViewBox extends Box(‘eyes’) {
 RequiredBoxTypesBox(); // as needed
 StereoViewInformationBox();
 HeroStereoEyeDescriptionBox(); // optional
 StereoCameraSystemBox(); // optional
 StereoCameraSystemBaselineBox(); // optional
 Box[]; // other optional boxes
}

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 14

June 9, 2025 1.9.8 (Beta)

1.3.3.Semantics
StereoViewInformationBox is a required box indicating which stereo eyes are
present.
RequiredBoxTypesBox indicates the box types for other boxes that must be
understood to interpret the current version of the StereoViewsBox. The
StereoViewInformationBox box type of ‘stri’ is required within
RequiredBoxTypesBox if a RequiredBoxTypesBox is used.

Other boxes indicate additional detail about the stereo-view representation and are
described in later sections of this document. The set of boxes may evolve.
1.4. Stereo-view information (‘stri’)
1.4.1. Definition
Box Type: ‘stri’
Container: Video stereo-view box (‘eyes’)
Mandatory: Yes
Quantity: One
The StereoViewInformationBox can carry the stereography-related information,
indicating the presence of particular stereo eyes (i.e., left stereo eye, right stereo eye), as well as
some other flags.
1.4.2.Syntax
aligned(8) class StereoViewInformationBox extends FullBox(‘stri’, 0, 0) {
 unsigned int(4) reserved; // reserved, set to 0
 unsigned int(1) eye_views_reversed;
 unsigned int(1) has_additional_views;
 unsigned int(1) has_right_eye_view; // video contains a right-eye view
 unsigned int(1) has_left_eye_view; // video contains a left-eye view
}

1.4.3.Semantics
has_left_eye_view: Indicates the stereo left eye is present in video frames.
has_right_eye_view: Indicates the stereo right eye is present in video frames.
has_additional_views: Indicates that one or more additional views may be
present beyond stereo left and stereo right eyes (e.g,. a “centerline” view).
eye_views_reversed: Indicates that the order of the stereo left eye and stereo
right eye is reversed from the default order (left being first and right being second).
reserved: 4 bits reserved for future versions of this specification; for this version of
this specification, writers should set it to 0, and readers should treat any non-zero
values as if this box is invalid.

Because there is a flag field for the left eye and a field for the right eye, both fields
should be set to indicate that both eyes are represented in video frames. Moreover, both

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 15

June 9, 2025 1.9.8 (Beta)

has_left_eye_view and has_right_eye_view can be set to 0 to indicate that
the frame is monoscopic.

Note: If the video is monoscopic, the StereoViewBox can also be absent
from the VideoExtendedUsageBox. If the only signaling is of
monoscopic video, the VideoExtendedUsageBox can be absent from
the VisualSampleEntry, too.

If an alternative organization is signaled in the future, the default order of stereo eyes in
video will be left eye first, then right eye. Setting the eye_views_reversed field
reverses the order, so the right view appears to the left of the frame, and the left view
appears to the right of the frame. For multiview coding, there is no implied ordering, and
the eye_views_reversed field should be set to 0.

Note: It may be useful to signal in a multiview coding approach the presence of
the left stereo eye, the right stereo eye and a third view, which is the
centerline or “down-the-nose” view between these and is neither the left
nor the right. It may not be possible or appropriate to use the left or the
right eye for this central view. There may be coding efficiencies from
being able to include such a view in multiview coding.

The has_left_eye_view and has_right_eye_view fields specify the presence
of the left and right stereo eye views, but the fields do not signal how those are stored.
That is accomplished with other child boxes of StereoViewBox.
Note that the has_additional_views field indicates that views beyond those for
the left eye and the right eye are present. One example of this might be a centerline
view. Note that signaling the presence of the centerline is not necessary if both the left
and right eye flags are zeroed, indicating a monoscopic view.
1.5.Hero Stereo-Eye Description
1.5.1.Definition
Box Type: ‘hero’
Container: Video stereo-view box (‘eyes’)
Mandatory: No
Quantity: Zero or one
The HeroStereoEyeDescriptionBox indicates which stereo eye, if any, has been
denoted as the hero eye. If so signaled, this indicates that the specified stereo eye view
may be useful when choosing which eye to use in a monoscopic viewing environment. If
neither eye is the hero eye, the HeroStereoEyeDescriptionBox does not need to
be included in the StereoViewBox. If the hero eye is not known, a
HeroStereoEyeDescriptionBox might not appear in the StereoViewBox.
It is possible to include a HeroStereoEyeDescriptionBox but set the flags to
indicate that neither the left nor the right stereo eye is set. Though unconventional, this
allows an implementation to reserve space for the box, to potentially set later in

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 16

June 9, 2025 1.9.8 (Beta)

processing. Readers should be prepared to recognize such a
HeroStereoEyeDescriptionBox that signals no hero eye.
1.5.2.Syntax
aligned(8) class HeroStereoEyeDescriptionBox extends FullBox(‘hero’, 0, 0)
{
 unsigned int(8) hero_eye_indicator; // 0 = none, 1 = left, 2 = right, >=
3 reserved
}

1.5.3.Semantics
HeroStereoEyeDescriptionBox is used to indicate which of the left or right
stereo eye is the hero eye, if any.
hero_eye_indicator: Used in the HeroStereoEyeDescriptionBox, to
signal which hero eye, if any, is specified. Defined values are:

0: The hero eye is not specified.
1: Indicates the left eye is the hero eye.
2: Indicates the right eye is the hero eye.
>= 3: Reserved, and should not be used for implementation of this version of this
specification. If a reserved value is read, a reader should treat the signaling as
though no hero eye is specified. If the hero eye is not specified, it is recommended
that HeroStereoEyeDescriptionBox not be included in the StereoViewBox.
The value of 0 is allowed, as it can be used to reserve space for the
HeroStereoEyeDescriptionBox that might be adjusted later.

The HeroStereoEyeDescriptionBox signals the left or the right stereo eye
independently of whether or not the stereo-view box’s
StereoViewInformationBox indicates that the order of the stereo eyes is reversed.
The hero left eye is always the left stereo eye, and the hero right eye is always the right
stereo eye.
1. Stereo Camera-System Box
1.1. Definition
Box Type: ‘cams’
Container: Stereo-view box (‘eyes’)
Mandatory: No
Quantity: Zero or one
Stereo views are typically produced through capture by a camera system of some kind.
Characteristics of that camera system may be useful for rendering or other processing.
Moreover, the kinds of information associated with a camera system may vary now or in the
future. As such, it seems prudent to allow one or more kinds of information to be carried for
consideration by the processing client. It is also the case that this information is optional, as
some stereo recording might not use a physical camera system. It may, however, be the case

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 17

June 9, 2025 1.9.8 (Beta)

that the camera system is virtual, so being able to include information that a physical camera
system produces also seems useful to allow.
To signal information about the stereo nature of the camera system, the
StereoCameraSystemBox is introduced. This is an optional Box instead of a FullBox
so that a hierarchy of boxes and full boxes related to the camera system can be carried.
1.2. Syntax
aligned(8) class StereoCameraSystemBox extends Box(‘cams’) {
 RequiredBoxTypesBox(); // optional
 StereoCameraSystemBaselineBox(); // optional
 Box[]; // other boxes that signal information about the camera system
}

1.3. Semantics
StereoCameraSystemBaselineBox is used to describe the baseline dimension
between centers of the stereo lenses of the camera system. It is optional. There is no
default interpretation when this box is absent.

2.Stereo Camera-System Baseline Box
2.1. Definition
Box Type: ‘blin’
Container: Stereo camera-system box (‘cams’)
Mandatory: No
Quantity: Zero or one
Stereo camera systems may provide a number of characteristics that may prove useful to
downstream rendering and processing of stereo frames captured by a camera system. One
such characteristic is the distance between the optical centers of the left and right stereo eye
camera lenses.
To signal information about the camera-system baseline, the
StereoCameraSystemBaselineBox is used. This is an optional FullBox that holds a
field with the distance in micrometers between the lenses. As distances in a camera system are
typically expressed in millimeters, this use of micrometers can also be seen as being expressed
in thousandths of a millimeter. The value is a fixed-point number expressed as an integer (i.e.,
63123 micrometers is 63.123 millimeters).

Note: Although StereoCameraSystemBaselineBox is not mandatory in the
overall box structure of VideoExtendedUsageBox, its presence is
required for the containing movie file to be considered "spatial media" by
visionOS 2.

2.2.Syntax
aligned(8) class StereoCameraSystemBaselineBox extends FullBox(‘blin’) {

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 18

June 9, 2025 1.9.8 (Beta)

 unsigned int(32) baseline_value;
}

2.3. Semantics
baseline_value holds the baseline dimension between centers of the stereo
lenses of the camera system. It is an unsigned 32-bit integer that is interpreted in
micrometers or thousandths of a millimeter (e.g., 63123 micrometers is 63.123
millimeters).

3.Stereo-Comfort Box
3.1. Definition
Box Type: ‘cmfy’
Container: Stereo-view box (‘eyes’)
Mandatory: No
Quantity: Zero or one
Stereo views are presented to the left and the right eye in a display system. How that is
performed can influence comfort. To allow different kinds of information related to stereo
comfort to be carried with the stereo video frames, it is useful to allow one or more pieces of
information to be carried.
To signal information influencing viewer comfort, the StereoComfortBox is introduced.
This is a Box instead of a FullBox, so that a hierarchy of boxes and full boxes related to
stereo comfort can be carried. This box is optional unless there are contained boxes. Only
StereoComfortDisparityAdjustmentBox is currently defined.
3.2.Syntax
aligned(8) class StereoComfortBox extends Box(‘cmfy’) {
 RequiredBoxTypesBox(); // optional
 StereoComfortDisparityAdjustmentBox(); // optional
 Box[]; // other boxes that signal information about stereo comfort
}

3.3.Semantics
StereoComfortDisparityAdjustmentBox is used to describe any adjustment
in the disparity between the stereo views of the current frame. The absence of this
box or a zero value in the disparity_adjustment field of the box indicates no
change in stereo disparity.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 19

June 9, 2025 1.9.8 (Beta)

4.Stereo-Comfort Disparity Adjustment Box
4.1.Definition
Box Type: ‘dadj’
Container: Stereo-comfort box (‘cmfy’)
Mandatory: No
Quantity: Zero or one
Stereo view comfort can be improved by allowing an adjustment in disparity to be specified. The
source of this disparity is not specified, but the value’s carriage is. As this adjustment is
optional, this information may not be present.
To signal information about changes to the stereo comfort disparity, the
StereoComfortDisparityAdjustmentBox is introduced. This is a FullBox holding a
field that indicates the amount of disparity to apply. If the value is 0, there is no disparity
adjustment. The value is a signed 32-bit integer that is interpreted as a uniform number over the
range [-1.0…0.0…+1.0]. The valid range of the integer is from -10000 to +10000, which maps
from -1.0 to +1.0. The interval of 0.0 to 1.0 and 0.0 to -1.0 are each mapped over the width of a
view’s image. Half of this value is applied to each stereo eye view.
The value is interpreted this way:

- Half the disparity is added to pixels in the left stereo eye view.
- Half the disparity is subtracted from pixels in the right stereo eye view.

As the disparity value is signed, adding a negative value to the left stereo eye is equivalent to
subtracting the absolute value of the disparity value. The right stereo eye’s subtraction of a
negative disparity value is likewise equivalent to adding the absolute value of the disparity
value.
Another interpretation of the sign of the disparity value is that positive denotes increased
disparity with respect to the parallel view direction (e.g., horizontal) and negative denotes
increased negative disparity with respect to the parallel view direction. Negative disparity is
toward the viewer.
If the disparity adjustment value is 0, the StereoComfortBox need not contain a
StereoComfortDisparityAdjustmentBox. If the StereoComfortBox would be left
with no child boxes, the StereoComfortBox can itself be missing. There are rules, however,
requiring the StereoComfortBox to exist.

Note: Although StereoComfortDisparityAdjustmentBox is not
mandatory in the overall box structure of VideoExtendedUsageBox,
its presence is required for the containing movie file to be considered
"spatial media" by visionOS 2.

4.2.Syntax
aligned(8) class StereoComfortDisparityAdjustmentBox extends
FullBox(‘dadj’) {
 int(32) disparity_adjustment;
}

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 20

June 9, 2025 1.9.8 (Beta)

4.3.Semantics
disparity_adjustment holds a value describing an optional adjustment in stereo
disparity. A value of 0 indicates there is no disparity adjustment and can also be
represented by not including a StereoComfortDisparityAdjustmentBox in
StereoComfortBox. The value is a signed 32-bit integer measured in the range of
-10000 to 10000, mapping to the uniform range [-1.0…1.0]. The interval of 0.0 to 1.0
or 0 to 10000 maps onto the stereo eye view image width. The negative interval 0.0
to -1.0 or 0 to -10000 similarly maps onto the stereo eye view image width.

Note: This is not measured as a percentage but instead as a uniform value. To
express 1.5%, the value 0.015 as a uniform value, or as the signed integer
150 (expressed over 10000), can be used.

Note: If the video is frame packed, for example, as side-by-side, the image width
is for one stereo eye rather than the total image width of the side-by-side
views. Other kinds of packings or arrangements also use the image width of
the view, however stored or represented.

2. Video projection signaling
Projections
A projection is a mathematical model mapping 3D world points onto 2D points such as
an image or sensor. This mapping in a camera system can be achieved through optical
elements such as lenses, through software or through a combination of the two.
2.1. Definition
Box Type: ‘proj’
Container: Video stereo-view box (‘eyes’)
Mandatory: No
Quantity: Zero or one
If the video frame has some form of projection or other mathematical transform, the projection
box may be used to indicate the algorithm and the approach taken. Downstream rendering likely
needs to perform a mapping to present the frame in a way the viewer understands.
ProjectionBox signals that a form of projection is required to present the video
track. Its contents signal one kind of projection.
2.2.Syntax
aligned(8) class ProjectionBox extends Box(‘proj’) {
 RequiredBoxTypesBox();
 ProjectionInformationBox();
 FullEquirectangularProjectionBox();// optional: one of the kinds of the
possible projections
 HalfEquirectangularProjectionBox();// optional: one of the kinds of the
possible projections

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 21

June 9, 2025 1.9.8 (Beta)

 FisheyeProjectionBox(); // optional: one of the kinds of the possible
projections
 ParametricImmersiveMediaProjectionBox(); // optional: one of the kinds
of the possible projections
 RectilinearProjectionBox(); // optional: one of the kinds of the
possible projections (default if absent)
 Box[]; // other kinds of boxes
}

2.3. Semantics
ProjectionInformationBox indicates the kind of projection described by the
ProjectionBox. Each possible projection kind may be associated with a sibling
box with additional parameters for that projection kind.
RequiredBoxTypesBox indicates the box types for other boxes that must be
understood to interpret the current version of the ProjectionBox.
FullEquirectangularProjectionBox indicates that the projection is an
equirectangular projection covering 360 degrees. More detail is found later in this
specification.
HalfEquirectangularProjectionBox indicates that the projection is an
equirectangular projection covering 180 degrees. More detail is found later in this
specification.
FisheyeProjectionBox indicates that the projection is a fisheye projection. More
detail is found later in this specification.

 ParametricImmersiveMediaProjectionBox indicates that the projection
uses the parametric lens projection.
RectilinearProjectionBox indicates that the projection is a rectilinear
projection. More detail is found later in this specification.
Other kinds of projections may be introduced in future versions of this specification.
Current versions of projections may also be extended in the future.

Note: The projection kinds may not require any additional parameterization, so
child box types for a particular projection kind may not exist.
Nevertheless, the box_type for such projection kinds is reserved.

3.Projection information (‘prji’)
3.1. Definition
Box Type: ‘prji’
Container: Projection box (‘proj’)
Mandatory: No
Quantity: One

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 22

June 9, 2025 1.9.8 (Beta)

The kinds of projections described by a ProjectionBox can vary according to this
specification, and in future versions of this specification. The
ProjectionInformationBox indicates the kind of projection carried.
3.2.Syntax
aligned(8) class ProjectionInformationBox extends FullBox(‘prji’, 0, 0) {
 unsigned int(32) projection_kind; // a FourCC for the kind of
projection
};
3.3.Semantics
projection_kind is a FourCC corresponding to the kind of projection. These
currently include ‘rect’, ’equi’, ‘hequ’ and ’prim’ with the reserved ’fish’ kind.

The ProjectionInformationBox can specify one kind of video projection for a
video track. With this version of the specification, it should be one of the following
projection_kind FourCCs with the corresponding projection kind of box:

• 'equi' : with optional FullEquirectangularProjectionBox, indicates a
360-degree projection;

• 'hequ' : HalfEquirectangularProjectionBox indicates a 180-degree
projection;

• 'fish' : FisheyeProjectionBox indicates a projection of a fisheye lens, but
reserved for legacy use;

• 'prim' : ParametricImmersiveMediaProjectionBox indicates a flexible
approach to describing parameterized projection; and

• 'rect' : RectilinearProjectionBox indicates that the projection is
rectilinear (with straight features), and serves as the default in the absence of
the ProjectionBox within the VideoExtendedUsageBox. Because it is
the default, this is likely not seen in movie files.

The ProjectionBox containing the ProjectionInformationBox may optionally have a
child box, using a box type that corresponds to the projection_kind. This child box is a
sibling of ProjectionInformationBox. It signals any parameters specific to that kind of
projection, and reserves the corresponding box types. Although no occurrences
of such boxes are defined in this specification, such usage is reserved for the future.

4.Rectilinear projection
4.1. Definition
Box Type: ‘rect’
Container: Projection box (‘proj’)
Mandatory: No
Quantity: Zero or one
The rectilinear projection is the default for video. There is no further processing
necessary to present video marked with just this projection. As the default, this can be

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 23

June 9, 2025 1.9.8 (Beta)

signaled by not including a ProjectionBox, or even by not including a
VideoExtendedUsageBox if there is no other signaling.
If this projection is used, the sibling ProjectionInformationBox
projection_kind should be set to ‘rect’.
It is possible to use this box to make it obvious what the intention is.
4.2.Syntax
aligned(8) class RectilinearProjectionBox extends FullBox(‘rect’, 0, 0) {
 // fields reserved for future use
};
4.3.Semantics
RectilinearProjectionBox signals a rectilinear projection. No fields are currently
defined within the box, but a child box of type 'rect' is reserved for future addition to this
specification.

6.Full Equirectangular projection
6.1. Definition
Box Type: ‘equi’
Container: Projection box (‘proj’)
Mandatory: No
Quantity: Zero or one
The FullEquirectangularProjectionBox indicates that the type of projection is a
360-degree projection using the equirectangular type. If no constraint on the angular limits is
specified elsewhere, the limits are 0º to 360º.
If this projection is used, the sibling ProjectionInformationBox
projection_kind should be set to ‘equi’.
6.2.Syntax
aligned(8) class FullEquirectangularProjectionBox extends FullBox(‘equi’,
0, 0) {
 // fields reserved for future use
};

6.3.Semantics
FullEquirectangularProjectionBox signals a 360-degree equirectangular
projection. No fields are currently defined within the box, but a child box of type 'equi' is
reserved for future addition to this specification for use of further details about the 360-
degree projection.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 24

June 9, 2025 1.9.8 (Beta)

7. Half-equirectangular projection
7.1. Definition
Box Type: ‘hequ’
Container: Projection box (‘proj’)
Mandatory: No
Quantity: Zero or one
The HalfEquirectangularProjectionBox indicates that the type of projection is a
180-degree projection based upon the equirectangular type. If no constraint on the angular
limits are specified elsewhere, the limits should be 0º to 180º.
If this projection is used, the sibling ProjectionInformationBox
projection_kind should be set to ‘hequ’.
7.2. Syntax
aligned(8) class HalfEquirectangularProjectionBox extends FullBox(‘hequ’,
0, 0) {
 // fields reserved for future use
};

7.3. Semantics
HalfEquirectangularProjectionBox signals a 180-degree half equirectangular
projection. No fields are currently defined within the box, but a child box of type 'hequ'
is reserved for future addition to this specification for use of further details about the
180-degree projection.

Note: The FourCC ‘hequ’ can optionally be pronounced “heck you.”.

-
8.Fisheye projection
8.1. Definition
Box Type: ‘fish’
Container: Projection box (‘proj’)
Mandatory: No
Quantity: Zero or one
The fisheye projection is a projection from a hemisphere (typically a special lens). This
kind of lens is often termed a fisheye lens, and so the projection uses the term fisheye. It
is not, however, necessary to have captured with such a lens to produce a fisheye
projection.
If this projection is used, the sibling ProjectionInformationBox
projection_kind should be set to ‘fish’.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 25

June 9, 2025 1.9.8 (Beta)

The projection kind 'fish' is reserved for a particular legacy implementation case and is
not expanded upon here. For more general spherical projection, look at the
ParametricImmersiveMediaProjectionBox ('prim') instead.
8.2.Syntax
aligned(8) class FisheyeProjectionBox extends FullBox(‘fish’, 0, 0) {
 // fields reserved for future use
};
8.3.Semantics
FisheyeProjectionBox signals a fisheye projection typically covering a 180-degree
field of view. No fields are currently defined within the box, but a child box of type 'fish'
is reserved for future addition to this specification for further details about the fisheye
projection.

-

9.Parametric Immersive Media projection
9.1. Definition
Box Type: ‘prim’
Container: Projection box (‘proj’)
Mandatory: No
Quantity: Zero or one
The parametric immersive projection is a generalized spherical projection and is
designed for significant flexibility.
If this projection is used, the sibling ProjectionInformationBox
projection_kind should be set to ‘prim’. A child box
ParametricImmersiveMediaProjectionBox may be introduced to describe
specific parameters needed, but currently none exist. Nevertheless, the child box of
type 'prim' is reserved for future use.
The parametric immersive projection requires that the VideoExtendedUsageBox
contains a CameraSystemLensCollectionBox characterizing the lens or lenses.
This describes the lens intrinsics and extrinsics and other relevant information
necessary for the projection to be applied.
9.2.Syntax
aligned(8) class ParametricImmersiveMediaProjectionBox extends
FullBox(‘prim’, 0, 0) {
 // fields reserved for future use
};

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 26

June 9, 2025 1.9.8 (Beta)

9.3.Semantics
ParametricImmersiveMediaProjectionBox signals a parametric spherical
projection, typically covering a 180-degree field of view. Unlike other current projections
defined (i.e., 'rect', 'equi', 'hequ' and 'fish'), this projection does have a concrete child
box of the ProjectionBox, specifically
ParametericImmersiveMediaProjectionBox.

3.Video view packing
3.1. Definition
Box Type: ‘pack’
Container: Video extended usage box (‘vexu’)
Mandatory: No
Quantity: Zero or one
A use of video tracks can be to encode more than one view in the same video frame. Different
areas of the decoded frame produce different images. The ViewPackingBox can signal
packing-related information. Types of packings can include frame-packed views and texture
atlases.

Note: Multiview encoding encodes multiple views in a way that no view is combined with
another view in what is delivered. Packing, or frame-packing, involves multiple
elements, combined in the same video frame and requiring addressing to extract
just that view. Multiview coding allows individual views to be accessed without
having to exclude portions of what is returned.

3.2.Syntax
aligned(8) class ViewPackingBox extends Box(‘pack’) {
 RequiredBoxTypesBox();
 ViewPackingInformationBox();
 Box[]; // other boxes
}

3.3.Semantics
RequiredBoxTypesBox indicates the box types for other boxes that must be
understood to interpret the current version of the PackingBox.
Other boxes may occur. Some may be required by future versions of this
specification.

-

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 27

June 9, 2025 1.9.8 (Beta)

3.4. View Packing information
3.4.1. Definition
Box Type: ‘pkin’
Container: Packing box (‘pack’)
Mandatory: No
Quantity: One
The kinds of packing described by a ViewPackingBox can vary according to this
specification and in future versions of this specification. The
ViewPackingInformationBox indicates the kind of packing used.
3.4.2. Syntax
aligned(8) class ViewPackingInformationBox extends FullBox(‘pkin’, 0, 0) {
 unsigned int(32) view_packing_kind; // a FourCC for the kind of
projection
};
3.4.3. Semantics
view_packing_kind is a FourCC corresponding to the kind of packing performed.
These currently include ‘side’ and ‘over’.

The ViewPackingInformationBox can specify a single-current kind of video
packing. It should be one of the following, with the corresponding value of
view_packing_kind:

‘side’: Indicates a side-by-side arrangement of full-resolution video views
arranged horizontally, where the width of each view is half the width of the
containing video frame.
‘over’: Indicates an over-under arrangement of full-resolution video views
arranged vertically, where one view is above the other and where the height of each
view is 1/2 the height of the containing video frame

The absence of packing can be specified by not including a ViewPackingBox.
Alternatively, a value of 0 can be specified for view_packing_kind, as a placeholder
that might be specified later.

4.Lens collection information
Some projections and associated processing may require signaling for each of the
lenses in the camera system. This information might include the lens pinhole intrinsics
matrix, extensions beyond the basic matrix, and/or other parameters. The number of
lenses might correspond to two for those needed in a stereo use case. Other lenses can
be introduced in the future.
2.4.Definition
Box Type: ‘lnsc’
Container: Video extended usage box (‘vexu’)
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 28

June 9, 2025 1.9.8 (Beta)

Mandatory: No
Quantity: Zero or one
2.5. Syntax
aligned(8) class CameraSystemLensCollectionBox extends Box(‘lnsc’) {
 RequiredBoxTypesBox(); // as needed
 CameraSystemLensBox()[]; // one or more
 CameraSystemExtrinsicsBox(); // extrinsics for the camera
system
 Box[]; // other optional boxes
}

2.6.Semantics
A CameraSystemLensBox is a required box for each relevant lens. If the camera
system has lenses that are not important for the projection algorithm, a ‘lens’ box is
not required for that lens.
RequiredBoxTypesBox indicates the box types for other boxes that must be
understood to interpret the current version of the
CameraSystemLensCollectionBox. The CameraSystemLensBox box type of
‘lens’ is required within RequiredBoxTypesBox if a RequiredBoxTypesBox is
used.

If there are no lenses, the ‘lnsc’ box should not be included in
VisualExtendedUageBox. Boxes contained within each 'lens' box indicate additional
detail about the camera-system lens and are described in later sections of this
document. The set of boxes may evolve.
1.3. Camera system lens (‘lens’)
1.3.1.Definition
Box Type: ‘lens’
Container: Camera-system lens collection box (‘lnsc’)
Mandatory: Yes
Quantity: One or more
The CameraSystemLensBox carries the lens-related information for one lens in the camera
system. There should be at least one ‘lens’ box if the camera-system projection
algorithm requires information about the lenses.
1.3.2.Syntax
aligned(8) class CameraSystemLensBox extends FullBox(‘lens’, 0, 0) {
 RequiredBoxTypesBox() must_box; // as needed
 CameraSystemLensHeaderBox() header_box; // identifier and algorithm
 CameraSystemLensReferenceDimensionsBox reference_dims;
 s() intrinsic_matrix;
 CameraSystemExtrinsicsBox(); // as needed
 Box[]; // other optional boxes
}

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 29

June 9, 2025 1.9.8 (Beta)

1.3.3.Semantics
CameraSystemLensHeaderBox: Indicates the lens reference identifier and the
algorithm associated with why lens parameters are signaled.
CameraSystemLensReferenceDimensionsBox: Indicates the dimensions
(width and height) of the image of the lens projection (typically the entirety of the
encoded buffer for multiview encoding, or the relevant horizontal or vertical half using
frame-packing).
CameraSystemLensIntrinsicsBox: Signals the basic pinhole model intrinsics
matrix, along with other values needed for the projection used by the lens.
CameraSystemExtrinsicsBox: Indicates the extrinsics that relate this lens to the
overall camera system.
RequiredBoxTypesBox: Indicates the box types for other boxes that must be
understood to interpret the current version of the CameraSystemLensBox. The
CameraSystemLensHeaderBox box type of ‘lnhd’ is required within
RequiredBoxTypesBox if a RequiredBoxTypesBox is used.

Though unlikely, different lenses can be described by ‘lens’ boxes with differing
algorithms, requiring different parameters. This might be useful in the future if a camera
system combines color-based lenses and depth-based lenses.

Note: The current spec version only supports lenses that capture color pixels.
This may be extended in the future. If that is done, a new box may be
introduced and signaled in the contained ‘must’ box.

3.5.Lens header information
3.5.1. Definition
Box Type: ‘lnhd’
Container: Camera-system lens box (‘lens’)
Mandatory: Yes
Quantity: One
The CameraSystemLensBox can vary according to this specification, and in future
versions of this specification. The CameraSystemLensHeaderBox indicates a unique
identifier that can be used to reference this lens from other parts of the
VisualExtendedUsageBox. It also signals the kind of algorithm so that the
interpretation of parameters is possible.
3.5.2. Syntax
aligned(8) class CameraSystemLensHeaderBox extends FullBox(‘lnhd’, 0, 0) {
 unsigned int(32) lens_identifier; // an integer unique to the
enclosing CameraSystemLensBox
 unsigned int(32) lens_algorithm_kind; // a FourCC for the kind of
projection
 unsigned int(32) lens_domain; // a FourCC for the kind of lens
(e.g., color)

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 30

June 9, 2025 1.9.8 (Beta)

 unsigned int(32) lens_role; // a FourCC indicating which lens
this is (e.g., left or right for a stereo system)
};

3.5.3. Semantics
lens_identifier is a big-endian 32-bit integer that can be referenced from other
structures in the VisualExtendedUsageBox. There is no prescribed interpretation of
lens_identifier. The reading process can read values that differ if written out, so
long as any references from other ‘vexu’ structures are updated consistently.
lens_algorithm_kind: Indicates the algorithm that makes use of the parameters held in the
CameraSystemLensBox.

The ProjectionInformationBox projection_kind field specifies the current
projection algorithm. In the current version of this specification, extended parameters
should only be used with a projection_kind of ‘prim’. The corresponding value
of lens_algorithm_kind indicates what additional lens collection signaling is
required:

‘prim’: Indicates the “ProIM” algorithm [OMNI]. This algorithm requires both a
sibling CameraSystemLensIntrinsicsBox and a
CameraSystemLensDistortionsBox, with an optional
CameraSystemLensFrameAdjustmentBox.
0: Indicates that the lens only describes its basic intrinsic matrix. That requires only
a CameraSystemLensIntrinsicMatrixBox.

lens_domain: Indicates the type of sensor readings this lens produces. The value is a FourCC
with one of these values:

The lens_domain can hold the value 'colr' to indicate that it produces color signaling
such as RGB or YCbCr samples. For convenience, a value of 0 is equivalent to 'colr'.

In the future, lens_domain might indicate depth or another useful representation, such as
from a Lidar sensor.

lens_role: Indicates the particular use of the lens in the camera system. For a stereoscopic
camera system where a CameraSystemLensCollection is required, there should be an identifier
for the left lens and another for the right lens.

'left': Indicates that this is the left lens in a stereoscopic camera system.
'rght': Indicates that this is the right lens in a stereoscopic camera system.
'mono': Indicates that this is the main or only camera lens in a monoscopic camera system.
0: Is a reserved value that should not be written in a movie, except in the case that the
containing CameraSystemLensHeaderBox is written as all zeros (0s) to reserve space.

In the future, other values for lens_role, for other lenses, may be introduced.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 31

June 9, 2025 1.9.8 (Beta)

Note: The lens_role should be used to indicate what purpose a lens serves. The
lens_identifier values should not be assigned fixed values that are inferred as
to the role of that lens (i.e., do not always use 1 to mean left lens and 2 to mean right
lens). There may be correlation between the writer's assignment of
lens_identifier and lens_role, but that should be treated only as
coincidence.

3.6.Lens reference dimensions
3.6.1. Definition
Box Type: ‘rdim’
Container: Camera-system lens box (‘lens’)
Mandatory: Yes
Quantity: One
The CameraSystemLensBox corresponding to a specific lens benefits from having
the horizontal and vertical dimensions that may need to be interpreted by algorithms
related to that lens. The CameraSystemLensReferenceDimensionsBox indicates
the pixel width and height for the buffer processed by the lens. This should match the
view bounds and doesn't necessarily correspond to the VisualSampleEntry dimensions
(e.g., for frame-packed cases).
3.6.2. Syntax
aligned(8) class CameraSystemLensReferenceDimensionsBox extends
FullBox(‘rdim’, 0, 0) {
 unsigned int(32) reference_width;
 unsigned int(32) reference_height;
};
3.6.3. Semantics
reference_width and reference_height are big-endian 32-bit integers for the
pixel width and height of the buffers that the lens algorithm processes. If this does not
match the VisualSampleEntry buffer width and height, the values used can be scaled by
the ratio of reference_width to image buffer width and reference_height to
image buffer height.
3.7.Lens intrinsic matrix
3.7.1. Definition
Box Type: ‘lnin’
Container: Camera-system lens box (‘lens’)
Mandatory: Yes
Quantity: One
The CameraSystemLensIntrinsicsBox describes the camera-system intrinsics for the containing lens. If
the camera system is a single-lens system, this corresponds to the intrinsics of the camera.

The intrinsic matrix is a 3x3 matrix of this form for a pinhole camera:

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 32

June 9, 2025 1.9.8 (Beta)

where
- fx and fy are the horizontal and vertical focal length in pixels. For square pixels, they

have the same value.
- s is an optional skew factor.
- cx and cy are the coordinates of the principal point. The origin is the upper left of the

image frame.
Note: The HEIF specification [HEIF] describes a 'cmin' CameraIntrinsicMatrixProperty but
does not signal the cells with default values (matrix[0][1] = 0, matrix[1][0] = 0, matrix [2][0]
and matrix [2][1] = 0, matrix[2][2] = 1). We adopt that practice here, using named fields
instead of a general matrix 3x3 form. HEIF allows matrix[0][1] to be an optional non-zero
skew_factor.
Note: Most cameras have square pixels, with no skew. In this case, fx and fy are equal and
skew s is zero (0).

The values of the intrinsic matrix can be calculated as follows:
The variable denominator is set equal to (1 << denominatorShiftOperand) where
denominatorShiftOperand is in the value of the field
denominator_shift_operand
The variable skewDenominator is set equal to (1 << skewDenominatorShiftOperand)
where skewDenominatorShiftOperand is the value of the field
skew_denominator_shift_operand.
fx = focal_length_x * image_width / denominator
fy = focal_length_y * image_height / denominator
cx = principal_point_x * image_width / denominator
cy = principal_point_y * image_height / denominator
s = skew_factor / skewDenominator

image_width and image_height come from
CameraSystemLensReferenceDimensionsBox reference_width and
reference_height fields.

fx s cx

0 fy cy

0 0 1

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 33

June 9, 2025 1.9.8 (Beta)

3.7.2. Syntax
aligned(8) class CameraSystemLensIntrinsicsBox extends FullBox(‘lnin’,
version = 0, flags) {
 signed int(16) denominator_shift_operand;
 signed int(16) skew_denominator_shift_operand;
 signed int(32) focal_length_x;
 signed int(32) principal_point_x;
 signed int(32) principal_point_y;
 if (flags & 1) {
 signed int(32) focal_length_y;
 signed int(32) skew_factor;
 }
 if (flags & 2) {
 BEFloat32 projection_offset;
 }
};

3.7.3. Semantics
A 3x3 matrix is not recorded in the CameraSystemLensBox but instead the
CameraSystemLensIntrinsicsBox carries fields that can be used to calculate the
cells of an equivalent 3x3 intrinsic matrix.

Note: Unlike the HEIF 'cmin' property item box [HEIF], the denominators are explicitly
carried as discrete fields instead of being "hidden" in the FullBox flags.

The fields are:
denominator_shift_operand : The number of arithmetic shifts left to calculate
the variable denominator (i.e., 1 << denominator_shift).
skew_denominator_shift_operand : The number of arithmetic shifts left to
calculate the variable skewDenominator (i.e., 1 << skew_denominator_shift).
focal_length_x : The horizontal focal length measured in image widths.
principal_point_x : The principal point x-coordinate in image widths.
principal_point_y : The principal point y-coordinate in image heights.
focal_length_y : The vertical focal length, measured in image heights. If not
specified by flags, the value of fy is equal to fx.
skew_factor : The camera-system lens skew factor. If not present, the value is
implied to be zero (0).
projection_offset: projection_offset is sometimes referred to as xi.

3.8.Lens distortions
Distortions in a lens may need to be characterized. This requires some kind of signaling
to do this. It might be a set of parameters. It might be something more complex such as
a 2D map of areas of the lens. For the parametric immersive projection, the lens

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 34

June 9, 2025 1.9.8 (Beta)

distortions can currently be characterized with four parameters (k1, k2, p1, and p2) and
an optional radial limit carried in a new box as fields.
3.8.1. Definition
Box Type: ‘ldst’
Container: Camera-system lens box (‘lens’)
Mandatory: No
Quantity: One
3.8.2. Syntax
aligned(8) class CameraSystemLensDistortionsBox extends FullBox(‘ldst’,
version = 0, flags) {
 BEFloat32 k1; // radial parameter k1
 BEFloat32 k2; // radial parameter k2
 BEFloat32 p1; // tangential parameter p1
 BEFloat32 p2; // tangential parameter p2
 if (flags & 1) {
 BEFloat32 calibration_limit_radial_angle;
 }
};
3.8.3. Semantics
The fields are:

k1 specifies radial parameter k1 according to the Brown-Conrady distortion model.
k2 specifies radial parameter k2 according to the Brown-Conrady distortion model.
p1 specifies tangential parameter p1 according to the Brown-Conrady distortion
model.
p2 specifies tangential parameter p2 according to the Brown-Conrady distortion
model.
calibration_limit_radial_angle specifies the outer limit of the calibration
validity in degrees of angle eccentric from the optical axis.

3.9.Lens calibration frame adjustment
To properly render camera-captured frames, sensor-produced images may require a
post calibration mapping, or adjustment, to make the generated mesh compatible with
the final video dimensions.
Toward this end, the optional CameraSystemLensFrameAdjustmentBox allows the
specification of remapping polynomial parameters to describe the adjustment.
3.9.1. Definition
Box Type: ‘lfad’
Container: Camera-system lens box (‘lens’)
Mandatory: No
Quantity: One

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 35

June 9, 2025 1.9.8 (Beta)

3.9.2. Syntax
aligned(8) class CameraSystemLensFrameAdjustmentBox extends FullBox(‘lfad’,
version = 0, 0) {
 BEFloat32 polynomialParametersX[3]; // parameters for X axis
 BEFloat32 polynomialParametersY[3]; // parameters for Y axis
};
3.9.3. Semantics
CameraSystemLensFrameAdjustmentBox has two fields currently:

polynomialParametersX and polynomialParametersY each specify an
array of exactly three BEFloat32 values which together satisfy these equations:

x' = ax + bx*x + cx*x3

y' = ay + by*y + cy*y3
where:

x is the x-axis source texture coordinate
y is the y-axis source texture coordinate
ax is polynomialParametersX[0]
bx is polynomialParametersX[1]
cx is polynomialParametersX[2]

ay is polynomialParametersY[0]
by is polynomialParametersY[1]
cy is polynomialParametersY[2]

Also, define:
referenceDimensions: The raw sensor image size, or the final exported
video size. This is the basis of source images used for the calibration
process.
cropDimensions: If calibrated from the sensor images, this is the center
crop size from the sensor image.
videoDimensions: The final exported video size.

The polynomial transform origin is at the center of the frame. {x,y} are the source
texture UV coordinates in the range [-0.5, 0.5]. {0.0,0.0} is the origin.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 36

June 9, 2025 1.9.8 (Beta)

The default values of elements of polynomialParametersX[] and
polynomialParametersY[] are each [0.0, 1.0, 0.0]. Some use cases for
setting parameters may be helpful to consider:
- If there is no cropping and no downsampling, or if it is calibrated from the

exported frame size, the parameters should be set to [0.0, 1.0, 0.0].
- If there is a custom UV transform, please fit your transform to the specified

polynomial here.
- For calibration from the sensor image with ISP applied, a regular UV transform

with centered cropping followed by downsampling:

Define:
- videoAspectRatio = video.width / video.height
referenceDimensionsAspectRatio = referenceDimensions.width
/ referenceDimensions.height
aspectRatioScale = videoAspectRatio /
referenceDimensionsAspectRatio

- If in landscape mode, or in portrait mode with a 90-degree rotation track matrix
(i.e., video.width >= video.height):
- cropScale = referenceDimension.width /
cropDimension.width

- polynomialParametersX = [0, cropScale, 0]
polynomialParametersY = [0, aspectRatioScale *
cropScale, 0]

- If in portrait mode without track matrix (i.e., video.width < video.height):
- cropScale = referenceDimension.width /
cropDimension.height

- polynomialParametersX = [0, cropScale /
aspectRatioScale, 0]
polynomialParametersY = [0, cropScale, 0]

Also, note that if more array elements than three are introduced in the future or new
fields are required, a future version of this specification will increase the version field
of CameraSystemLensFrameAdjustmentBox and introduce new fields. The
polynomialParametersX and polynomialParametersY fields should not be
treated as dynamic arrays with more or fewer than three elements.

2.Camera-System Extrinsics
A camera system—whether a single-lens camera, a stereoscopic system with two, or a
theoretical system with more lenses—has a relationship from its lens(es) to the world coordinate
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 37

June 9, 2025 1.9.8 (Beta)

system. This relationship establishes camera location in the world and is embodied in the
camera extrinsics. Just as there is an intrinsic matrix for a lens, typically an extrinsic matrix
establishes the orientation and position of the entire camera. Other models might use an
extrinsic matrix establishing the lens' position and orientation. The extrinsic matrix embodies a
rotation and translation. The rotation might be represented by a matrix of alternatively by a
quaternion.
Instead of a single extrinsic matrix for the camera system, this specification takes the approach
of describing a lens (or camera-system element) relative to the overall camera system. An
outcome of this is that the signaling for a multi lens system is that each lens may duplicate the
camera-system transform while identifying its relationship to a single point around which the
transform is applied.
As a matrix, the extrinsic matrix might look like:

where ri,k cells embody rotation and the t vector positions the world origin in camera
coordinates.
An alternative formulation to a 4x3 matrix is to signal the extrinsics with a quaternion for the
rotation transform and some other indication of the camera's origin.
As mentioned in the introduction, coordinate systems user here are right-handed.

2.1.1.1.1.Definition
Box Type: ‘lnex’
Container: Camera-system lens box (‘lens’)
Mandatory: No
Quantity: Zero or one
The camera system may need to signal extrinsics. For a single-lens system, it is unambiguous
(i.e., one cameras system has one lens has one extrinsic transform). For a multi lens system,
each lens exists in relation to other lenses in the overall camera system and can signal per lens
extrinsics using a CameraSystemLensExtrinsicsBox. There is still an overall notion of
camera extrinsics and this is done by carrying a single
CameraSystemLensExtrinsicsBox within the overall
CameraSystemLensCollectionBox that describes the camera system. Initially, the
approach is restricted in what is signaled but may be extended in future versions of this
specification even to the point of describing each lens' contribution by referencing
lenses by their lens identifier.

r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 38

June 9, 2025 1.9.8 (Beta)

2.1.1.1.2.Syntax
aligned(8) class CameraSystemLensExtrinsicsBox extends Box(‘lnex’) {
 RequiredBoxTypesBox(); // as needed
 CameraSystemOriginSourceBox(); // optional
 CameraSystemTransformBox(); // optional
 Box[];
};
2.1.1.1.3.Semantics
CameraSystemOriginSourceBox: a box indicating how the origin for the applied
transform is applied with respect to this lens.
CameraSystemTransformBox: a box indicating the transform to apply to the origin
of the camera system.
2.1.1.2.Camera-system origin source
2.1.1.2.1.Definition
Box Type: ‘corg’
Container: Camera-system lens extrinsics box (‘lnex’)
Mandatory: Yes
Quantity: One
The camera-system extrinsics indicate an origin for the camera system that will be coupled with
a further transform. The origin may be derived from values instead of directly specified in the
extrinsics containing box. The CameraSystemOriginSourceBox indicates how it is
determined. Initially, the approach is restricted to a stereoscopic (binocular) system
where translations are inferred along the baseline distance. This approach may be
extended in future versions of this specification.
2.1.1.2.2.Syntax
aligned(8) class CameraSystemOriginSourceBox extends FullBox(‘corg’, 0,0) {
 unsigned int(32) source_of_origin; // e.g., 'blin'
};
2.1.1.2.3.Semantics
source_of_origin: Identifies how the origin of the camera system's extrinsics are
determined.

This can hold these values:
'blin': Indicating the center of transform is determined by the point mid way along

the dimensions indicated by the StereoCameraSystemBaselineBox held in
the StereoCameraSystemBox. The lens_role in
CameraSystemLensHeaderBox affects the interpretation in that the left lens
distance to the origin is 1/2 the distance indicated in
StereoCameraSystemBaselineBox and the right lens distance to the origin
is the reverse of that direction but with the same magnitude of 1/2 the distance
indicated in StereoCameraSystemBaselineBox.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 39

June 9, 2025 1.9.8 (Beta)

 In the future, other values may be introduced to indicate other sources of direction
and magnitude to the origin for the transform.

Other values for origins may be introduced with new boxes or extensions to existing
boxes.

2.1.1.3.Camera system transform
The rotation or other transform to orient the camera system in world coordinates may take
various forms depending upon the kind of projection used. New formulations may be introduced
in future versions of this specification.

2.1.1.3.1.Definition
Box Type: ‘cxfm’
Container: Camera-system lens extrinsics box (‘lnex’)
Mandatory: Yes
Quantity: One
Whereas CameraSystemOriginSourceBox indicates the origin of the extrinsic transform,
the CameraSystemTransformBox indicates the transform around that origin. Currently, a
quaternion is used. In the future, a matrix or other representation may be introduced.
2.1.1.3.2.Syntax
aligned(8) class CameraSystemTransformBox extends Box(‘cxfm’) {
 RequiredBoxTypesBox(); // as needed
 CameraSystemUnitQuaternionTransformBox(); // optional
 Box[];
};
2.1.1.3.3.Semantics
CameraSystemUnitQuaternionTransformBox: A box holding a unit quaternion
describing the rotation.
RequiredBoxTypesBox: In future versions of the specification, new mandatory boxes
may be introduced that are required to be understood. At that time, the new box types
can be signaled in a RequiredBoxTypesBox contained within the enclosing
CameraSystemTransformBox.
2.1.1.4.Camera-system unit quaternion transform
The rotation or other transform may be modeled as a quaternion. The
CameraSystemUnitQuaternionTransformBox holds the three fields of a unit quaternion.
2.1.1.4.1.Definition
Box Type: ‘uqua’
Container: Camera-system transform box (‘cxfm’)
Mandatory: No
Quantity: Zero or one
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 40

June 9, 2025 1.9.8 (Beta)

CameraSystemUnitQuaternionTransformBox describes a single unit quaternion. It
exists to be mappable to a runtime representation of a unit quaternion, such as the first three
elements of the vector of a simd_quatf data type.
2.1.1.4.2.Syntax
aligned(8) class CameraSystemUnitQuaternionTransformBox extends
FullBox(‘uqua’, 0, 0) {
 BEFloat32 xyz[3];
};
2.1.1.4.3.Semantics
xyz: A vector of three big-endian Float32 elements corresponding to the elements of a
unit quaternion (i.e., a quaternion with a length of 1).

Use of other signaling extensions
Horizontal field-of-view box
The VisualSampleEntry defined an extension box to signal the horizontal field of view.
3.Definition
Box Type: ‘hfov’
Container: Visual sample entry
Mandatory: No
Quantity: Zero or one
The horizontal field of view of the decoded video frame image may be important to know. This
can be signaled with the optional HorizontalFieldOfViewBox extension to
VisualSampleEntry. The horizontal field of view is an unsigned integer in 1000ths of a
degree (e.g., 123.456 is represented as 123456).
The HorizontalFieldOfViewBox is optional, but if present, there can be at most one
HorizontalFieldOfViewBox in a VisualSampleEntry.

Note: Although HorizontalFieldOfViewBox is not mandatory in the
overall VisualSampleEntry structure parallel to
VideoExtendedUsageBox, its presence is required for the containing
movie file to be considered "spatial media" by visionOS 2. It may be
present for other use cases beyond stereo video.

3.1.1.1.1.Syntax
aligned(8) class HorizontalFieldOfViewBox extends Box(‘hfov’) {
 unsigned int(32) field_of_view;
};

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 41

June 9, 2025 1.9.8 (Beta)

3.1.1.1.2.Semantics
field_of_view: An unsigned 32-bit integer indicating the degrees, in 1000ths of a
degree. A 104º field of view would be recorded as 104000.

Auxiliary Video Track Handler Type
To date, video tracks have used the handler type ‘vide’. Other track types such as audio and
metadata use their own handler types (i.e., ’soun’ and ‘meta’, respectively). This has never been
a problem because the decoded video can be presented as is, though perhaps with scaling or
cropping. With stereo video tracks, the decoded video may require additional processing such
as view extraction before being presented to the user.
Movies or fragmented movie files for HTTP Live Streaming may now use the auxiliary video, or
‘auxv’, handler type to “hide” the video track from naive reader decode and presentation. For
example, this can be useful for a video track with an alternative layout of images, signaled using
a video extended usage atom.
If the decoded video, however, displays in a backwards-compatible way when delivered—such
as MV-HEVC showing just a default view from the stereo pair—there is no need to use the ‘auxv’
handler type. Use ‘vide’ in this case. Also, HTTP Live Streaming mediates the media shown so
that the multivariant playlist can serve to filter display of particular video streams.
In a production workflow, where users expect to see and confirm the decoded video even if
further processing might be expected when delivered to an end user, it is okay to use ‘vide’ so
tools that already present or process video tracks can find the track.

Spatial Audio
The experience is enhanced if audio can represent the spatial acoustic environment. Just as
listening to stereo audio is richer than listening to mono audio, even richer audio representations
are possible with appropriate audio coding. A number of advanced audio technologies exist, and
they may be used in isolation or in combination.
QTFF/ISOBMFF audio tracks use audio codecs to encode and carry audio—uncompressed and
compressed—and the codecs can use different audio technologies. Some technologies are
applicable to Spatial Audio, and when used in that way, the audio might be termed Spatial Audio.
ISOBMFF can carry a wide range of uncompressed and compressed formats, some supporting
spatial playback. By introducing new audio codecs in audio tracks, the movie can carry Spatial
Audio.
ISOBMFF movies may contain any supported audio format. As additional formats are supported,
those may prove useful for delivering more richer experiences.

Spatial Audio Technologies
By way of a quick summary, there are three audio technologies typically used in the Spatial
Audio realm.
Channel-based audio can include more than one audio channel, each of which is mapped onto
the speaker layout. This is called multichannel audio, and is typically used with 5.1 and 7.1 audio.
The number and placement of these channels in the soundscape can be more varied, and the

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 42

June 9, 2025 1.9.8 (Beta)

channel count can be more or less than the six of 5.1 or the eight of 7.1. Indeed, stereo has two
channels, so is in fact multichannel, but that term is almost never applied to stereo.
Another technology, termed ambisonics, is a modeling of three-dimensional audio in a 360-
degree space. It allows for the recording, mixing, and playing back of such audio. Just as
multichannel audio can vary in channel count, ambisonic audio can vary in order, allowing more
refined audio with higher-degreed ambisonics. Audio is fixed in location but surrounds the user.
A third technology, object-based audio, models each sound source as an object, with
associated metadata describing three-dimensional placement and other relevant
characteristics. Individual objects might be fixed in 3D or might move in 3D over time.
This specification does not prescribe which audio encoding formats, or which technologies
within those formats, are used to realize a richer experience.

Timed Metadata and Spatial Media
Spatial media tracks such as video may benefit from having associated timed metadata.
Although this might be injected in AVC or HEVC SEI signaling, an alternative is to use a parallel
metadata track. This timed metadata track can use the ISOBMFF ‘mebx’ format’s ability to carry
a number of metadata items for a time range. Metadata item keys need not be related to other
item keys, allowing a flexible way to signal a variety of structural or descriptive information.
We consider one kind of timed metadata payload related to describing the parallax of decoded
stereoscopic video frames.

New data types
Some new data types are introduced as composite payloads to support timed metadata
introduced here. Although it would be possible to introduce keys for elements of these
composite structures, it is deemed more efficient to treat each payload as a self-contained
value.

BEFloatVector3
aligned(8) class BEFloatVector3 {
 BEFloat32 vector_elements[3]; // three elements that are each a
BEFloat32
}
Semantics:

vector_elements[3]: An array of three big-endian IEEE 754 single floating-point values
indexed from 0 to 2 for three elements. Each element is typed as a BEFloat32. The
interpretation of each element is not prescribed, but a typical mapping might be x, y and z
coordinates.

BEFloatQuaternion
aligned (8) class BEFloatQuaternion {

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 43

June 9, 2025 1.9.8 (Beta)

 BEFloat32 quaternion_elements[4]; // four elements making up quaternion
}

aligned (8) class BEFloatUnitQuaternion {
 BEFloat32 unit_quaternion_elements[3]; // three elements making up a unit
quaternion having length 1.0
}

Semantics:
quaternion_elements[4]: An array of four big-endian IEEE 754 single floating-point
values, indexed from 0 to 3, for four elements that map onto the four elements of a
mathematical quaternion. Each element is typed as a BEFloat32. This vector of four elements
should be mappable to a runtime's mathematical representation for a quaternion.
Quaternions are defined by a scalar (real) part and three imaginary parts, collectively called
the vector part. The order of elements in quaternion_elements corresponds to the real part
(labeled r), then the three imaginary parts (labeled ix, iy and iz).
unit_quaternion_elements[3]: An array of three big-endian IEEE 754 single floating-
point values, indexed from 0 to 2, for three elements that map onto the three elements of a
unit mathematical quaternion. Each element is typed as a BEFloat32. This vector of three
elements should be mappable to a runtime's mathematical representation for a unit
quaternion. Unit quaternions have a length of 1.0.

Caption-parallax timed metadata items
Traditionally, captions are placed in the horizontal and vertical axes over video. With the
introduction of stereoscopic video, however, there is a risk of depth collision if captions are
placed in Z, so they might intersect with stereoscopic elements that have a parallax (i.e.,
horizontal disparity) that is less than the screen plane. This “depth conflict” can produce viewer
discomfort. To account for this, captions can have their parallax adjusted to have a more
negative parallax than the video elements so there is no collision.
The document “Video Contour Map Payload Metadata within the QuickTime Movie File Format—
Format Additions” [METADATA] specifies the structure of a metadata payload structure that can
serve to describe parallax values associated with 2D areas of a stereoscopic video frame. This
metadata is specific to the time-aligned video frame.
This payload is carried as metadata items within samples, within QuickTime File Format [QTFF]
timed metadata or ISOBMFF [ISOBMFF] multiplexed metadata. Note: Both of these use the
'mebx' format type of the 'meta' track handler type. The payloads can also occur in fragmented
movie files in both ISOBMFF and QTFF.

Motion timed metadata items
Much of this document describes the local projections needed to deliver a stereoscopic
experience at a point in time, corresponding to a single video frame in an overall timeline. When
played as video, a spatial experience is produced that is dynamic as time progresses. If dynamic
metadata were captured in parallel with the video that also characterized the motion of the
capturing device and user, that may prove useful in ways that are unanticipated or anticipated.
That motion might help in understanding how to deliver better user comfort, or where user
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 44

June 9, 2025 1.9.8 (Beta)

comfort might be compromised. Aside from its role in user comfort, this motion might prove
useful for purposes that may only become available long after capture or initial delivery. That
might take the form of new algorithms requiring novel metadata.
To that end, this section enumerates potential timed metadata items that seem general and are
agnostic to how they are used. Novel services and algorithms can be built upon the presence of
some or all of these motion-related metadata items.
Accelerator, gyroscope and magnetometer
When carried in ‘mebx’ timed metadata [QTFF, ISOBMFF], there are three metadata items, each
for a particular kind of motion data. Each key indicates the source of the value, and items in
samples represent discrete readings from that sensor. The timescale of the timed metadata
track can differ from that of the corresponding video, allowing for more frequent or less frequent
sensor reading than the frequency of produced video frames.

Each value is a vector, with subfields for elements needed in the interpretation of the value,
rather than separate metadata items for each field or element. These data-type payloads are
documented in this specification. These use the following keys and value definitions:

Note1: BE refers to “big-endian.”
Note2: ISOBMFF does not currently support signaling data types as QTFF does.

Semantics
The com.apple.quicktime.motion.accelerometer value is a
BEFloatVector3, encoding G’s m/s2 relative to earth’s gravity (9.81 m/s2).

The com.apple.quicktime.motion.gyroscope value is a BEFloatVector3,
encoding angular velocity in radians per second (rad/s).

The com.apple.quicktime.motion.magnetometer value is a
BEFloatVector3, encoding magnetic field in microtesla (µT).
Pose orientation and orientation heading
These metadata items may be interesting.

Keyspace Key Data type1 Well-known
data type2

mdta com.apple.quicktime.motion.accelerometer BEFloatVector3 TBD

mdta com.apple.quicktime.motion.gyroscope BEFloatVector3 TBD

mdta com.apple.quicktime.motion.magnetometer BEFloatVector3 TBD

Keyspace Key Data type1 Well-known
data type2

mdta com.apple.quicktime.motion.pose-orientation BEFloatQuaternion TBD

mdta com.apple.quicktime.motion.orientation-
heading

BEFloat32 23

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 45

June 9, 2025 1.9.8 (Beta)

Semantics
The com.apple.quicktime.motion.pose-orientation value is a
BEFloatQuaternion, encoding datum in quaternions.

The com.apple.quicktime.motion.gyroscope value is a BEFloat32,
encoding Euler angles (degrees).

Motion Events
The camera may experience unanticipated motion that may be useful to accommodate
processing for comfort or other purposes. To capture these motion events, a metadata item is
introduced to signal the event(s) from a collection of known event identifiers.

Semantics
The com.apple.quicktime.motion.eventID key is associated with a payload
value that is a big-endian unsigned 8-bit integer holding one of the values from the
following table. New events may be introduced in the future. Any unrecognized event
IDs should be ignored, as opposed to producing a failure.

Keyspace Key Data Type1 Well-Known
Data Type2

mdta com.apple.quicktime.motion.eventID BEUInt8 75

Motion Event Name Motion
Event ID

Description

Motion Nominal 0 No motion event currently detected.

Level Departure 1 The camera is no longer in its nominal “horizon-level" state, as
calibrated by the user.

Tumble 2 The camera orientation changes from a steady state to a high
rotation rate on at least two axes.

Drop 3 The camera experiences rapid vertical acceleration from a steady
state.

Shock 4 The camera is physically hit by an object at high speed, from any
direction.

Roll 5 The camera experiences rapid roll moment from a steady state.

Pan 6 The camera experiences rapid pan moment from a steady state.

Tilt 7 The camera experiences rapid tilting moment from a steady state.

Heave 8 The camera detects a period of cyclical up-and-down motion after a
steady state period.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 46

June 9, 2025 1.9.8 (Beta)

There is no obligation for cameras to write motion-event metadata, but if they do so, the above
metadata item "mdta/com.apple.quicktime.motion.eventID" and event ID payloads
should be used.

The absence of motion events may be written in two ways:
1. Write the Motion Nominal (0) event ID.
2. Write no motion-metadata item to the metadata track for that time period.

(Recommended)

Comfort-related motion-analysis timed-metadata items
Motion-analysis timed metadata is composed of:

- Rotational motion indicator
- Perpendicular motion indicator
- Horizontal-panning motion indicator
- Vertical-panning motion indicator
- Motion score—mean from pixel differences
- Motion score—standard deviation from pixel differences
- Mean optical-flow magnitude
- Mean optical-flow magnitude in the horizontal direction
- Mean optical-flow magnitude in the vertical direction

Sway 9 The camera detects a period of cyclical lateral and/or longitudinal
motion after a steady state period.

Vibration 10 The camera detects high- or low-amplitude vibration in any
direction at a frequency.

Motion Event Name Motion
Event ID

Description

Keyspace Key Data Type1 Well-Known
Data Type2

mdta com.apple.quicktime.motion.metric.rotational BEFloat32 23

mdta com.apple.quicktime.motion.metric.perpendicular BEFloat32 23

mdta com.apple.quicktime.motion.metric.pan-
horizontal

BEFloat32 23

mdta com.apple.quicktime.motion.metric.pan-vertical BEFloat32 23

mdta com.apple.quicktime.motion.metric.pixel-
difference-mean

BEFloat32 23

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 47

June 9, 2025 1.9.8 (Beta)

Semantics
All of the above metrics are per frame and of type BEFloat32. The first four metrics are
indicators for different kinds of camera motion and are generated from optical-flow analysis.
They quantify rotational motion, perpendicular motion, horizontal pan, and vertical pan,
respectively. Pixel difference is an overall motion score generated from analyzing pixel
differences based on their mean and standard deviation. The last three metrics measure the
overall optical-flow magnitude between consecutive frames.

Conclusion
This document describes extensions to the QuickTime (.mov) and ISOBMFF movie formats.
These extensions are introduced by Apple to allow for the delivery of stereoscopic video, spatial
audio, and timed metadata signaling, to influence parallax of any subtitles associated with the
video. This is applicable to both standalone movie and fragmented movie files. It attempts to
build on existing structures where that was deemed appropriate, and introduces new constructs
where there was a perceived deficit or a benefit in introducing a new construct. The evolution of
the QTFF/ISOBMFF extensions described here may be taken through standards processes in
time. This document also introduces the notion of movie profiles, which are described
separately.

mdta com.apple.quicktime.motion.metric.pixel-
difference-standard-deviation

BEFloat32 23

mdta com.apple.quicktime.motion.metric.flow.mean-
magnitude

BEFloat32 23

mdta com.apple.quicktime.motion.metric.flow.mean-
horizontal-magnitude

BEFloat32 23

mdta com.apple.quicktime.motion.metric.flow.mean-
vertical-magnitude

BEFloat32 23

Keyspace Key Data Type1 Well-Known
Data Type2

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 48

June 9, 2025 1.9.8 (Beta)

Document Revision History
Date Revision Notes
2025-06-09 1.9.8 Beta version toward version 2.0
2023-06-21 0.9 First version

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 49

	Introduction
	References
	Stereo Video
	Stereoscopic, Stereopsis and Stereo Media
	Stereoscopic Video Tracks
	Multiview Video Tracks and MV-HEVC Compression

	Video Extended Usage
	Video Extended Usage Box Hierarchy
	Video Extended Usage (‘vexu’) box
	Definition
	Syntax
	Semantics
	Required box types (‘must’) box
	Video stereo-view signaling
	Video projection signaling
	Rectilinear projection
	Full Equirectangular projection
	Half-equirectangular projection
	Fisheye projection
	Parametric Immersive Media projection
	Video view packing
	Lens collection information

	Use of other signaling extensions
	Horizontal field-of-view box

	Auxiliary Video Track Handler Type
	Spatial Audio
	Spatial Audio Technologies

	Timed Metadata and Spatial Media
	New data types
	Caption-parallax timed metadata items
	Motion timed metadata items
	Comfort-related motion-analysis timed-metadata items

	Conclusion
	Document Revision History

